Follow

We sought with this workshop, to foster a discussion of various topics that fall under the general umbrella of responsible recommendation: ethical considerations in recommendation, bias and discrimination in recommender systems, transparency and accountability, social impact of recommenders, user privacy, and other related concerns. Our goal was to encourage the community to think about how we build and study recommender systems in a socially-responsible manner.

Recommendation systems are increasingly impacting people's decisions in different walks of life including commerce, employment, dating, health, education and governance. As the impact and scope of recommendations increase, developing systems that tackle issues of fairness, transparency and accountability becomes important. This workshop was held in the spirit of FATML (Fairness, Accountability, and Transparency in Machine Learning), DAT (Data and Algorithmic Transparency), and similar workshops in related communities. With "Responsible Recommendation", we brought that conversation to RecSys.

Browse the contents of Fairness, Accountability and Transparency in Recommender Systems:

2017