Document Type


Publication Date



Biocrusts are sensitive to changes in livestock grazing intensity in arid rangelands and may be useful indicators of ecosystem functions, particularly soil properties like soil stability, which may suggest the potential for soil erosion. We compared biocrust community composition and surface soil stability in a big sagebrush (Artemisia tridentata) steppe rangeland in the northwestern Great Basin in several paired sites, with or without long-term cattle grazing exclusion, and similar soils (mostly sandy loams), climate, and vegetation composition. We found that livestock grazing was associated with both lower surface soil stability and cover of several biocrust morphogroups, especially lichens, compared with sites with long-term livestock exclusion. Surface soil stability did not modify the effects of grazing on most biocrust components via interactive effects. Livestock grazing effects on total biocrust cover were partially mediated by changes in surface soil stability. Though lichens were more sensitive to grazing disturbance, our results suggest that moss (mostly Tortula ruralis in this site) might be a more readily observable indicator of grazing-related soil stability change in this area due to their relatively higher abundance compared with lichens (moss: mean, 8.5% cover, maximum, 96.1%, lichens: mean, 1.0% cover, maximum, 14.1%). These results highlight the potential for biocrust components as sensitive indicators of change in soil-related ecosystem functions in sagebrush steppe rangelands. However, further research is needed to identify relevant indicator groups across the wide range of biocrust community composition associated with site environmental characteristics, variable grazing systems, other rangeland health metrics, and other disturbance types such as wildfire.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Included in

Biology Commons