Document Type

Article

Publication Date

3-2022

Abstract

Flight behavior of soaring birds depends on a complex array of physiological, social, demographic, and environmental factors. California Condors (Gymnogyps californianus) rely on thermal and orographic updrafts to subsidize extended bouts of soaring flight, and their soaring flight performance is expected to vary in response to environmental variation and, potentially, with experience. We collected 6298 flight tracks described by high-frequency GPS telemetry data from five birds ranging in age from 1 to 19 yr old and followed over 32 d in summer 2016. Using these data, we tested the hypothesis that climb rate, an indicator of flight performance, would be related to the topographic and meteorological variables the bird experienced, and also to its age. Climb rate was greater when condors were flying in faster winds and during environmental conditions that were conducive to updraft development. However, we found no effect of age on climb rate. Although many of these relationships were expected based on flight theory, the lack of an effect of age was unexpected. Our work expands understanding of the relationship condors have with the environment, and it also suggests the potential for as-yet unexplored complexity to this relationship. As such, this study provides insight into avian flight behavior and, because flight performance influences bird behavior and exposure to anthropogenic risk, it has potential consequences for development of conservation management plans.

Copyright Statement

This document was originally published in Journal of Raptor Research by Raptor Research Foundation. Copyright restrictions may apply. https://doi.org/10.3356/JRR-20-94

Included in

Biology Commons

Share

COinS