Document Type

Student Presentation

Presentation Date

4-15-2019

College

College of Arts and Sciences

Department

Department of Mathematics

Faculty Sponsor

Dr. Michal A. Kopera

Abstract

Antarctic ice-cover extends from the ice-cap on the continent (ice-sheet) into the surrounding ocean forming floating ice-shelves. The interaction of ice-shelves and ocean underneath (in the so-called ice-shelf cavity) controls the rate at which the ice is exported from the ice-sheet to the ocean, which directly contributes to sea-level rise. The ocean circulation underneath Antarctic ice-shelves is poorly understood and is one of the focal points of worldwide climate modeling efforts.

In this work, we are conducting a feasibility study of deploying a new ocean circulation model NUMO to an ice-shelf cavity circulation problem. We are testing the performance of the model on a simplified cavity geometry, with a particular focus to the area close to the grounding line. The feasibility study involves measuring the time it takes the model to produce a 2-week simulation given the spatial resolution used, the order of the numerical scheme, and the number of processors of Boise State’s R2 cluster used for the simulation. The results of this study will be used to improve the performance of the NUMO model.

Share

COinS