Title
Optimization of Alnico’s Processing Route to Enhance Magnetic Properties
Document Type
Student Presentation
Presentation Date
4-15-2019
College
College of Engineering
Department
Department of Mechanical & Biomedical Engineering
Faculty Sponsor
Dr. Mahmood Mamivand
Abstract
Growing concerns for carbon emissions and the rising cost of petroleum has increased interest into finding alternatives to fossil fuel–based energy resources. Current sustainability efforts using electric vehicles rely on strong permanent magnets (PM) to work efficiently and rare earth (RE) metals make the best PM. Due to short supply of RE metals, efforts for developing non-RE PM to meet the demand of traction motors is a major focus of scientific and engineering communities. Alnico alloy (Fe, Al, Ni, Co, etc.) is an attractive near-term solution. However, Alnico’s magnetic properties are not as competitive as RE PM. Theoretically, Alnico can produce similar magnetic strength than RE PM, with proper microstructure optimization. In this effort, we will develop a physics-based mesoscale model to gain insight into the manufacturing process of Alnico, including thermal magnetic treatment along with spinodal decomposition, to optimize the processing route to maximize Alnico’s magnetic strength.
Recommended Citation
Betancourt, Omar, "Optimization of Alnico’s Processing Route to Enhance Magnetic Properties" (2019). 2019 Undergraduate Research and Scholarship Conference. 15.
https://scholarworks.boisestate.edu/under_conf_2019/15