Novel Methods in Fabricating Silicon Knives for Surgical Applications
Publication Date
12-2005
Type of Culminating Activity
Thesis
Degree Title
Master of Science in Electrical Engineering
Department
Electrical and Computer Engineering
Supervisory Committee Chair
Jeff Jessing
Abstract
Ultra-sharp instruments are necessary in many surgical applications such as corneal, retinal, and neurological surgeries. Conventional diamond blades are always reused, and the metal blades are often reused because of their high cost. This reuse can result in significant performance and bio-safety concerns. Hence, there is considerable research interest in developing affordable, single-use surgical instruments that perform closer to or better than the existing gold standard blades. The aim of this thesis is to describe the design, fabrication, and characterization of ultra-sharp micromachined silicon blades that can construct reproducible surgical incisions. The research is focused on the formation of a Laser In-situ Keratoileusis (LASIK) silicon blade. LASIK is a surgical procedure that corrects nearsightedness & farsightedness. Novel approaches to fabricate microsurgical blades using through-wafer bulk micromachining techniques of off-axis wafers are introduced. Two different approaches are taken: a simplified single-mask layer approach yielding a testable silicon blade and a more complicated dual-mask approach yielding an ideal structure close to that of a conventional metal blade. The surgical blades are successfully fabricated and have been characterized by our partners at USC's Doheny Retina Institute. Promising results have been observed, i.e., the silicon surgical blades have outperformed the gold standard metal blades.
Recommended Citation
Peesari, Srikar Reddy, "Novel Methods in Fabricating Silicon Knives for Surgical Applications" (2005). Boise State University Theses and Dissertations. 492.
https://scholarworks.boisestate.edu/td/492