Publication Date
5-2012
Type of Culminating Activity
Thesis
Degree Title
Master of Science in Mathematics
Department
Mathematics
Supervisory Committee Chair
Donna Calhoun, Ph.D.
Abstract
We explore a striped pattern generated by a general Turing model in three different geometries. We look at the square, disk, and hemisphere and make connections between the stripes in each spatial direction. In particular, we gain a greater understanding of when perfect stripes can be generated and what causes defects in their patterns. In this investigation, we look at the difference between the solutions due to the different domain shapes. In the end, we propose a reason why stripes from a reaction-diffusion system with zero-flux boundary conditions can be perfect on a square or hemisphere, but not on a disk.
Recommended Citation
Schneider, Jean Tyson, "Perfect Stripes from a General Turing Model in Different Geometries" (2012). Boise State University Theses and Dissertations. 290.
https://scholarworks.boisestate.edu/td/290