Publication Date

5-2022

Date of Final Oral Examination (Defense)

3-10-2022

Type of Culminating Activity

Dissertation

Degree Title

Doctor of Philosophy in Materials Science and Engineering

Department

Materials Science and Engineering

Major Advisor

David Estrada, Ph.D.

Advisor

Emily Heckman, Ph.D.

Advisor

Brian Jaques, Ph.D.

Advisor

Claire Xiong, Ph.D.

Advisor

Troy Unruh, M.S.

Abstract

Advanced manufacturing based direct-write technologies have emerged as the predominant enabler for the fabrication of active and passive sensors for use in harsh operating environments. The ability to directly write and integrate electronic components onto physical packaging can be achieved with additive manufacturing (AM) methods such as direct write technologies (DWT) which include aerosol jet printing (AJP), Ink Jet Printing (IJP), Plasma Jet Printing (PJP), and Micro-Dispense Printing (MDP). In this work, we investigate the use of these methods to accelerate, modernize, and enhance the functionality of sensors and instrumentation to achieve the goal of improving the safety and efficiency of processes that take place within harsh environments. This dissertation accomplishes these objectives with the following activities: (1) an investigation targeting structural health monitoring of space habitats with the development of AJP capacitive strain gauges, (2) an investigation on the melt behavior of AM melt wires by benchmarking the performance of AM melt wires to their classically fabricated counterparts for peak temperature monitoring in nuclear reactors, and (3) the development of AM neutron dosimeters for directional flux monitoring in the TREAT reactor. The results from these activities highlight DWTs as potential solutions for the development of miniature and robust sensors that are difficult to achieve with traditional fabrication methods for nuclear and aerospace instrumentation.

DOI

https://doi.org/10.18122/td.1928.boisestate

Available for download on Wednesday, May 01, 2024

Share

COinS