Publication Date
8-2020
Date of Final Oral Examination (Defense)
4-30-2020
Type of Culminating Activity
Thesis
Degree Title
Master of Science in Biological Sciences
Department
Biology
Supervisory Committee Chair
Marie-Anne de Graaff, Ph.D.
Supervisory Committee Member
Ian Robertson, Ph.D.
Supervisory Committee Member
Gail Wilson, Ph.D.
Abstract
Bioenergy production may reduce the emission of CO2 which contributes to climate change, particularly when management strategies are adopted that promote soil carbon (C) sequestration in bioenergy cropping systems. Planting perennial native grasses, such as switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerardii Vitman) may be used as a strategy to enhance soil C accumulation owing to their extensive root systems. Fertilizer use may further promote soil C sequestration, because of its positive impacts on plant production and soil C input. However,, the influence of fertilizer addition on soil C accumulation is variable across bioenergy cropping systems, and fertilizer can negatively impact the environment. Increasing plant diversity may be used as a strategy to enhance soil C accumulation while augmenting other ecosystem properties such as soil biodiversity. The present study evaluates how inter- and intra- specific plant community diversity and N addition influence soil C storage and soil biodiversity. Soil was collected from a long-term (9 growing seasons) field experiment located at the Fermilab National Environmental Research Park in Illinois, USA. Treatments included [1] three cultivars of big bluestem and three cultivars of switchgrass cultivars grown in monoculture, [2] plant community diversity manipulated at both the species- and cultivar level, and [3] nitrogen (N) applied annually at two levels (0 and 67 kg ha-1). The soil at the site was dominated by C3 grasses for 30 years before replacement with C4 bioenergy grasses, which enabled quantification of plant-derived C accumulation owing to the natural difference in isotopic signature between C3 and C4 grasses. Soil samples were analyzed for [1] soil C and its δ13C isotopic signature, and [2] nematode and soil bacterial diversity. Our results indicate that both plant diversity and N addition influence soil community structure but not soil C storage or soil nematode biodiversity. However, the addition of big bluestem to the plant species mixes enhanced plant-derived C storage. In summary, our findings suggest that plant species identity can control soil C accumulation in the years following land conversion, and that manipulating plant community structure in bioenergy cropping systems may have a greater positive impact on soil C accumulation than N fertilization.
DOI
10.18122/td/1701/boisestate
Recommended Citation
Butt, Jennifer, "Plant Diversity and Nitrogen Addition on Belowground Biodiversity and Soil Organic Carbon Storage in Biofuel Cropping Systems" (2020). Boise State University Theses and Dissertations. 1701.
10.18122/td/1701/boisestate