Publication Date
8-2019
Date of Final Oral Examination (Defense)
7-31-2019
Type of Culminating Activity
Dissertation
Degree Title
Doctor of Philosophy in Geosciences
Department
Geosciences
Supervisory Committee Chair
V. Dorsey Wanless, Ph.D.
Supervisory Committee Member
Mark Schmitz, Ph.D.
Supervisory Committee Member
Brittany Brand, Ph.D.
Supervisory Committee Member
Corey Wall, Ph.D.
Abstract
Lavas erupted at ocean island volcanoes are classically used as probes of the deep Earth, with ultimate goals of discerning the compositional heterogeneity, structure and dynamics of the Earth’s mantle. However, sampling restricted to volcanic islands and large, submarine volcanic constructs alone likely results in limited spatial resolution of the mantle’s composition and structure, owing to homogenization in sub-island magma reservoirs. Further, islands provide poor temporal resolution given that their multigenetic construction can overprint any time progressive chemical variations and they subside with age making detailed sampling difficult. For my dissertation I investigate whether seamounts surrounding islands in the Galápagos Archipelago preserve a more spatially distributed record of punctuated, point-source magmatism providing a different perspective on these deeper processes. The first chapter investigates the physical characteristics of the near-island seamounts resulting in the derivation of a 0.2-0.4 m/ka subsidence rate for the archipelago. Chapters two and three evaluate the magmatic relationship of the seamounts to the islands that they surround. From this, it appears seamounts are closely related to the islands but do indeed preserve a higher resolution picture related to evolution and mantle zonation. An important component of my dissertation has been to mix and calibrate a Pb double spike for internal mass-dependent fractionation correction of Pb isotope measurements at Boise State University in an effort to collect highly accurate and precise isotopic data of the seamount lavas to complement the high-resolution sampling of the seamounts themselves (Chapter 4). Finally, the fifth chapter uses high precision Pb isotopes to show that all of the isotopic end members in the Galápagos can be produced from the recycling of a single oceanic package.
DOI
10.18122/td/1579/boisestate
Recommended Citation
Schwartz, Darin M., "Insights into the Evolution of the Galápagos Archipelago and Its Mantle Source from Monogenetic Near-Island Seamounts" (2019). Boise State University Theses and Dissertations. 1579.
10.18122/td/1579/boisestate