Publication Date
5-2019
Date of Final Oral Examination (Defense)
4-25-2019
Type of Culminating Activity
Dissertation
Degree Title
Doctor of Philosophy in Materials Science and Engineering
Department
Materials Science and Engineering
Supervisory Committee Chair
Yanliang Zhang, Ph.D.
Supervisory Committee Co-Chair
David Estrada, Ph.D.
Supervisory Committee Member
Claire Xiong, Ph.D.
Supervisory Committee Member
Rutvik Jatin Mehta, Ph.D.
Abstract
Flexible thermoelectric devices are attractive power sources for the growing demand of flexible electronics and sensors. Thermoelectric generators have an advantage due to no moving parts, silent operation and constant power production with a thermal gradient.
Conventional thermoelectric devices are rigid and fabricated using complex and relatively costly manufacturing processes, presenting a barrier to increase the market share of this technology. To overcome such barriers, this work focuses on developing near ambient-temperature flexible thermoelectric generators using relatively low-cost additive manufacturing processes. A screen printable ink was developed for transforming nanoparticle ink into high-performance flexible thermoelectric generators with a peak thermoelectric figure of merit of 0.43 and 1 for the n-type and p-type materials respectively. Additionally, thermoelectric material properties were further improved using a liquid phase sintering method, which resulted in bulk like performance for printed flexible devices. Lastly, aerosol jet printable inks and photonic sintering processes were developed to highlight the potential for large scale roll-to-roll manufacturing and 3D conformal printing of thermoelectric generators.
DOI
10.18122/td/1543/boisestate
Recommended Citation
Valayil Varghese, Tony, "Additive Manufacturing of High Performance Flexible Thermoelectric Generators Using Nanoparticle Inks" (2019). Boise State University Theses and Dissertations. 1543.
10.18122/td/1543/boisestate
Included in
Manufacturing Commons, Nanoscience and Nanotechnology Commons, Other Materials Science and Engineering Commons