Publication Date

12-2016

Date of Final Oral Examination (Defense)

11-9-2016

Type of Culminating Activity

Thesis

Degree Title

Master of Science in Geophysics

Department

Geosciences

Supervisory Committee Chair

Hans-Peter Marshall, Ph.D.

Supervisory Committee Member

John Bradford, Ph.D.

Supervisory Committee Member

Alejandro N. Flores, Ph.D.

Abstract

The methods typically used to study snow stratigraphy, microstructure, and variability are expensive, cumbersome, and often highly subjective. Near-infrared (NIR) photography is a low-cost, portable tool to rapidly collect high-resolution, objective measurements of snow microstructure and variability. To expand its application, an active-source NIR flash was introduced to the traditionally passive-source method. NIR imagery was collected alongside proven snowpit methods such as manual observation, Snow Fork wetness, and Snow Micro-Penetrometer hardness profiles. NIR photography was also deployed in five pits along a 10.6 km transect in Grand Mesa, CO, to track stratigraphy variations in space. The NIR flash was found to improve contrast and lower noise for layer detection using automated statistical processing of the images. NIR photography data complemented traditional methods and was shown to provide unique, insightful observations, especially on stratigraphy and microstructure. NIR photography is demonstrated to be a convenient, valuable method to correlate layer stratigraphy across small and large distances. NIR photography is shown to be a rapid snow stratigraphy technique providing repeatable, unique, and informative insight into the complex and rapidly evolving nature of snowpack stratigraphy, microstructure, and variability.

Share

COinS