Document Type
Article
Publication Date
12-22-2014
Abstract
Symmetric quantum dots (QDs) on (111)-oriented surfaces are promising candidates for generating polarization-entangled photons due to their low excitonic fine structure splitting(FSS). However, (111) QDs are difficult to grow. The conventional use of compressive strain to drive QD self-assembly fails to form 3D nanostructures on (111) surfaces. Instead, we demonstrate that (111) QDs self-assemble under tensile strain by growing GaAs QDs on an InP(111)A substrate. Tensile GaAs self-assembly produces a low density of QDs with a symmetric triangular morphology. Coherent, tensile QDs are observed without dislocations, and the QDs luminescence at room temperature. Single QD measurements reveal low FSS with a median value of 7.6 μeV, due to the high symmetry of the (111) QDs. Tensile self-assembly thus offers a simple route to symmetric (111) QDs for entangled photon emitters.
Copyright Statement
Copyright 2014 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in the Applied Physics Letters and may be found at http://dx.doi.org/10.1063/1.4904944.
For complete list of authors, please see article.
Publication Information
Simmonds, Paul J.. (2014). "Strain-Driven Growth of GaAs(111) Quantum Dots with Low Fine Structure Splitting". Applied Physics Letters, 105(25), 251901-1 - 251901-5. http://dx.doi.org/10.1063/1.4904944