Document Type
Article
Publication Date
11-7-2023
Abstract
A bacteriochlorophyll a (Bchla) dimer is a basic functional unit in the LH1 and LH2 photosynthetic pigment–protein antenna complexes of purple bacteria, where an ordered, close arrangement of Bchla pigments—secured by noncovalent bonding to a protein template—enables exciton delocalization at room temperature. Stable and tunable synthetic analogs of this key photosynthetic subunit could lead to facile engineering of exciton-based systems such as in artificial photosynthesis, organic optoelectronics, and molecular quantum computing. Here, using a combination of synthesis and theory, we demonstrate that exciton delocalization can be achieved in a dimer of a synthetic bacteriochlorin (BC) featuring stability, high structural modularity, and spectral properties advantageous for exciton-based devices. The BC dimer was covalently templated by DNA, a stable and highly programmable scaffold. To achieve exciton delocalization in the absence of pigment–protein interactions critical for the Bchla dimer, we relied on the strong transition dipole moment in BC enabled by two auxochromes along the Qy transition, and omitting the central metal and isocyclic ring. The spectral properties of the synthetic “free” BC closely resembled those of Bchla in an organic solvent. Applying spectroscopic modeling, the exciton delocalization in the DNA-templated BC dimer was evaluated by extracting the excitonic hopping parameter, J to be 214 cm−1 (26.6 meV). For comparison, the same method applied to the natural protein-templated Bchla dimer yielded J of 286 cm−1 (35.5 meV). The smaller value of J in the BC dimer likely arose from the partial bacteriochlorin intercalation and the difference in medium effect between DNA and protein.
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial 3.0 License
Publication Information
Mass, Olga A.; Watt, Devan R.; Patten, Lance K.; Pensack, Ryan D.; Lee, Jeunghoon; Turner, Daniel B.; Yurke, Bernard; and Knowlton, William B.. (2023). "Exciton Delocalization in a Fully Synthetic DNA-Templated Bacteriochlorin Dimer". Physical Chemistry Chemical Physics, 25(41), 28437-28451. https://doi.org/10.1039/D3CP01634J