Document Type
Article
Publication Date
11-1-2022
Abstract
The nuclear power industry has growing interest in qualifying powder metallurgy with hot isostatic pressing (PM-HIP) to replace traditional alloy fabrication methods for reactor structural components. But there is little known about the response of PM-HIP alloys to reactor conditions. This study directly compares the response of PM-HIP to forged Ni-base Alloy 625 under neutron irradiation doses ∼0.5–1 displacements per atom (dpa) at temperatures ranging ∼321–385 °C. Post-irradiation examination involves microstructure characterization, ASTM E8 uniaxial tensile testing, and fractography. Up through 1 dpa, PM-HIP Alloy 625 appears more resistant to irradiation-induced cavity nucleation than its forged counterpart, and consequently experiences significantly less hardening. This observed difference in performance can be explained by the higher initial dislocation density of the forged material, which represents an interstitial-biased sink that leaves a vacancy supersaturation to nucleate cavities. These findings show promise for qualification of PM-HIP Alloy 625 for nuclear applications, although higher dose studies are needed to assess the steady-state irradiated microstructure.
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Publication Information
Clement, Caleb; Panuganti, Sowmya; Warren, Patrick H.; Zhao, Yangyang; Lu, Yu; Wheeler, Katelyn; . . . and Wharry, Janelle P. (2022). "Comparing Structure-Property Evolution for PM-HIP and Forged Alloy 625 Irradiated with Neutrons to 1 dpa". Materials Science and Engineering: A, 857, 144058. https://doi.org/10.1016/j.msea.2022.144058
Comments
For a complete list of authors, please see the article.
Erratum in: Materials Science and Engineering, 2024 March, Vol. 894, doc no. 146202. Significant correction to various sections and images. See erratum publication for details at https://doi.org/10.1016/j.msea.2024.146202