Document Type
Article
Publication Date
3-2019
Abstract
Conventional microchip fabrication is energy and resource intensive. Thus, the discovery of new manufacturing approaches that reduce these expenditures would be highly beneficial to the semiconductor industry. In comparison, living systems construct complex nanometer-scale structures with high yields and low energy utilization. Combining the capabilities of living systems with synthetic DNA-/protein-based self-assembly may offer intriguing potential for revolutionizing the synthesis of complex sub-10 nm information processing architectures. The successful discovery of new biologically based paradigms would not only help extend the current semiconductor technology roadmap, but also offer additional potential growth areas in biology, medicine, agriculture and sustainability for the semiconductor industry. This article summarizes discussions surrounding key emerging technologies explored at the Workshop on Biological Pathways for Electronic Nanofabrication and Materials that was held on 16–17 November 2016 at the IBM Almaden Research Center in San Jose, CA.
Copyright Statement
This is an author-created, un-copyedited version of an article published in Nano Futures. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/2399-1984/aaf7d5
Publication Information
Zadegan, Reza M.. (2019). "Roadmap on Biological Pathways for Electronic Nanofabrication and Materials". Nano Futures, 3(1), 012001-1 - 012001-30. https://doi.org/10.1088/2399-1984/aaf7d5
Comments
For a complete list of authors, please see article.