Data-Driven Passivity-Based Control of Underactuated Mechanical Systems via Interconnection and Damping Assignment

Document Type

Article

Publication Date

6-2023

Abstract

Since its introduction in the late 1980s, passivity-based control (PBC) has proven to be successful in controlling many robotic systems. The connection between stability and passivity theory is the most attractive feature of controllers designed using this methodology. However, the need to solve nonlinear partial differential equations (PDE) in closed-form has been a major challenge in applying PBC to general robotic systems. Here, we introduce a systematic approach to design controllers for a class of underactuated mechanical systems based on interconnection and damping assignment. Exploiting the universal approximation capability of neural networks, we formulate a data-driven optimisation problem that discovers solutions to the required PDEs automatically. Our approach does not destroy the passivity structure, preserving the inherent stability properties. We demonstrate the efficacy of our framework on two benchmark problems: the inertia wheel pendulum and the ball and beam system.

Share

COinS