Constitutive Modeling of Oriented and Non-Oriented Magnetostrictive Particulate Composites

Document Type

Article

Publication Date

5-1-2023

Abstract

This study presents a mathematical framework for two-phase magnetostrictive composites composed of oriented or non-oriented magnetostrictive Terfenol-D particles embedded in passive polymer matrices. The phase constitutive behavior of the monolithic Terfenol-D with arbitrary crystal orientations is represented by a recently developed discrete energy averaged model. This unique Terfenol-D constitutive model results in close-form and linear algebraic equations accurately describing the nonlinear magnetostriction and magnetization in magnetostrictive composites subjected to a given loading or magnetic field increment. The effectiveness of this new mathematical framework in capturing magnetostrictive particle size orientation, phase volume fractions, mechanical loading conditions, and magnetic field excitations are validated using a series of experimental data available in literature. Compared to existing models that prevalently addressed particle orientation in composite constitutive level, the model framework in this study directly handles particle orientation in the phase constitutive level, and therefore achieves enhanced efficiency while maintaining comparable accuracy.

Share

COinS