Document Type
Article
Publication Date
12-2022
Abstract
There is growing appreciation that architectural components of the nucleus regulate gene accessibility by altering chromatin organization. While nuclear membrane connector proteins link the mechanosensitive actin cytoskeleton to the nucleoskeleton, actin’s contribution to the inner architecture of the nucleus remains enigmatic. Control of actin transport into the nucleus, plus the presence of proteins that control actin structure (the actin tool-box) within the nucleus, suggests that nuclear actin may support biomechanical regulation of gene expression. Cellular actin structure is mechanoresponsive: actin cables generated through forces experienced at the plasma membrane transmit force into the nucleus. We posit that dynamic actin remodeling in response to such biomechanical cues provides a novel level of structural control over the epigenetic landscape. We here propose to bring awareness to the fact that mechanical forces can promote actin transfer into the nucleus and control structural arrangements as illustrated in mesenchymal stem cells, thereby modulating lineage commitment.
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication Information
Rubin, Janet; Van Wijnen, Andre J.; and Uzer, Gunes. (2022). "Architectural Control of Mesenchymal Stem Cell Phenotype Through Nuclear Actin". Nucleus, 13(1), 35-48. https://doi.org/10.1080/19491034.2022.2029297