Efficient Singularity-Free Workspace Approximations Using Sum-of-Squares Programming
Document Type
Article
Publication Date
12-2020
Abstract
In this paper, we provide a general framework to determine inner and outer approximations to the singularity-free workspace of fully actuated robotic manipulators, subject to Type-I and Type-II singularities. This framework utilizes the sum-of-squares optimization technique, which is numerically implemented by semidefinite programming. In order to apply the sum-of-squares optimization technique, we convert the trigonometric functions in the kinematics of the manipulator to polynomial functions with an additional constraint. We define two quadratic forms, describing two ellipsoids, whose volumes are optimized to yield inner and outer approximations of the singularity-free workspace.
Publication Information
Sirichotiyakul, Wankun; Patoglu, Volkan; and Satici, Aykut C. (2020). "Efficient Singularity-Free Workspace Approximations Using Sum-of-Squares Programming". Journal of Mechanisms and Robotics, 12(6), 061004. https://dx.doi.org/10.1115/1.4046997