Document Type
Article
Publication Date
1-1-2013
Abstract
The Immersed Boundary (IB) method is a widely-used numerical methodology for the simulation of fluid–structure interaction problems. The IB method utilizes an Eulerian discretization for the fluid equations of motion while maintaining a Lagrangian representation of structural objects. Operators are defined for transmitting information (forces and velocities) between these two representations. Most IB simulations represent their structures with piecewise linear approximations and utilize Hookean spring models to approximate structural forces. Our specific motivation is the modeling of platelets in hemodynamic flows. In this paper, we study two alternative representations – radial basis functions (RBFs) and Fourier-based (trigonometric polynomials and spherical harmonics) representations – for the modeling of platelets in two and three dimensions within the IB framework, and compare our results with the traditional piecewise linear approximation methodology. For different representative shapes, we examine the geometric modeling errors (position and normal vectors), force computation errors, and computational cost and provide an engineering trade-off strategy for when and why one might select to employ these different representations.
Copyright Statement
NOTICE: this is the author's version of a work that was accepted for publication in Applied Numerical Mathematics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Applied Numerical Mathematics, Volume 63 (2013). DOI: 10.1016/j.apnum.2012.09.006
Publication Information
Shankar, Varun; Wright, Grady B.; Fogelson, Aaron L.; and Kirby, Robert M.. (2013). "A Study of Different Modeling Choices for Simulating Platelets Within the Immersed Boundary Method". Applied Numerical Mathematics, 6358-77. https://doi.org/10.1016/j.apnum.2012.09.006