"Sex and Stride Impact Joint Stiffness During Loaded Running" by Tyler N. Brown, AuraLea C. Fain et al.
 

Sex and Stride Impact Joint Stiffness During Loaded Running

Document Type

Article

Publication Date

4-2021

Abstract

This study determined changes in lower limb joint stiffness when running with body-borne load, and whether they differ with stride or sex. Twenty males and 16 females had joint stiffness quantified when running (4.0 m/s) with body-borne load (20, 25, 30, and 35 kg) and 3 stride lengths (preferred or 15% longer and shorter). Lower limb joint stiffness, flexion range of motion (RoM), and peak flexion moment were submitted to a mixed-model analysis of variance. Knee and ankle stiffness increased 19% and 6% with load (P < .001, P = .049), but decreased 8% and 6% as stride lengthened (P = .004, P < .001). Decreased knee RoM (P < .001, 0.9°–2.7°) and increased knee (P = .007, up to 0.12 N.m/kg.m) and ankle (P = .013, up to 0.03 N.m/kg.m) flexion moment may stiffen joints with load. Greater knee (P < .001, 4.7°–5.4°) and ankle (P < .001, 2.6°–7.2°) flexion RoM may increase joint compliance with longer strides. Females exhibited 15% stiffer knee (P = .025) from larger reductions in knee RoM (4.3°–5.4°) with load than males (P < .004). Stiffer lower limb joints may elevate injury risk while running with load, especially for females.

Share

COinS