Three UV-Sensitive Chlamydomonas Mutants are All Deficient in Photoreactivation
Faculty Mentor Information
5 & 6
Presentation Date
7-2016
Abstract
UV sensitivity has been demonstrated to be highly variable in a number of model organisms. There are several strains of Chlamydomonas reinhardtii, a single celled alga, which are reported to be UV-sensitive (uvs) mutants but not all of their respective phenotypes are well characterized. Three uvs Chlamydomonas mutants were systematically evaluated for survivorship of UV induced DNA damage regiments: one deficient in nucleotide excision repair (uvs1), a second deficient in photoreactivation (phr), and finally a DNA-damage-mediated cell cycle arrest mutant (uvs11). Unexpectedly, we find that all three of these strains, not just phr, are deficient in photoreactivation. Here we present our initial characterization and discussion of this finding.
Three UV-Sensitive Chlamydomonas Mutants are All Deficient in Photoreactivation
UV sensitivity has been demonstrated to be highly variable in a number of model organisms. There are several strains of Chlamydomonas reinhardtii, a single celled alga, which are reported to be UV-sensitive (uvs) mutants but not all of their respective phenotypes are well characterized. Three uvs Chlamydomonas mutants were systematically evaluated for survivorship of UV induced DNA damage regiments: one deficient in nucleotide excision repair (uvs1), a second deficient in photoreactivation (phr), and finally a DNA-damage-mediated cell cycle arrest mutant (uvs11). Unexpectedly, we find that all three of these strains, not just phr, are deficient in photoreactivation. Here we present our initial characterization and discussion of this finding.
Comments
Poster #W8