Document Type

Article

Publication Date

5-2019

Abstract

Forecasting the timing and magnitude of snowmelt and runoff is critical to managing mountain water resources. Warming temperatures are increasing the rain–snow transition elevation and are limiting the forecasting skill of statistical models relating historical snow water equivalent to streamflow. While physically based methods are available, they require accurate estimations of the spatial and temporal distribution of meteorological variables in complex terrain. Across many mountainous areas, measurements of precipitation and other meteorological variables are limited to a few reference stations and are not adequate to resolve the complex interactions between topography and atmospheric flow. In this paper, we evaluate the ability of the Weather Research and Forecasting (WRF) Model to approximate the inputs required for a physics-based snow model, iSnobal, instead of using meteorological measurements, for the Boise River Basin (BRB) in Idaho, United States. An iSnobal simulation using station data from 40 locations in and around the BRB resulted in an average root-mean-square error (RMSE) of 4.5 mm compared with 12 SNOTEL measurements. Applying WRF forcings alone was associated with an RMSE of 10.5 mm, while including a simple bias correction to the WRF outputs of temperature and precipitation reduced the RMSE to 6.5 mm. The results highlight the utility of using WRF outputs as input to snowmelt models, as all required input variables are spatiotemporally complete. This will have important benefits in areas with sparse measurement networks and will aid snowmelt and runoff forecasting in mountainous basins.

Copyright Statement

© Copyright 2019 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. All AMS journals and monograph publications are registered with the Copyright Clearance Center (http://www.copyright.com). Questions about permission to use materials for which AMS holds the copyright can also be directed to permissions@ametsoc.org. Additional details are provided in the AMS Copyright Policy statement, available on the AMS website (http://www.ametsoc.org/CopyrightInformation).

Share

COinS