Document Type
Article
Publication Date
3-16-2017
Abstract
The causes and effects of erosion are among the least understood aspects of pyroclastic density current (PDC) dynamics. Evidence is especially limited for erosional self-channelization, a process whereby PDCs erode a channel that confines the body of the eroding flow or subsequent flows. We use ground-penetrating radar imaging to trace a large PDC scour and fill from outcrop to its point of inception and discover a second, larger PDC scour and fill. The scours are among the largest PDC erosional features on record, at >200 m wide and at least 500 m long; estimated eroded volumes are on the order of 106 m3. The scours are morphologically similar to incipient channels carved by turbidity currents. Erosion may be promoted by a moderate slope (5–15°), substrate pore pressure retention, and pulses of increased flow energy. These findings are the first direct evidence of erosional self-channelization by PDCs, a phenomenon that may increase flow velocity and runout distance through confinement and substrate erosion.
Copyright Statement
This document was originally published in PloS One by Public Library of Science. This work is provided under a Creative Commons Attribution 3.0 license. Details regarding the use of this work can be found at: http://creativecommons.org/licenses/by/3.0/. doi: 10.1002/2016GL072178
Publication Information
Gase, Andrew C.; Brand, Brittany D.; and Bradford, John H.. (2017). "Evidence of Erosional Self-Channelization of Pyroclastic Density Currents Revealed by Ground-Penetrating Radar Imaging at Mount St. Helens, Washington (USA)". Geophysical Research Letters, 44(5), 2220-2228. https://doi.org/10.1002/2016GL072178