Deciphering and Predicting Spatial and Temporal Concentrations of Arsenic Within the Mekong Delta Aquifer

Document Type

Article

Publication Date

9-25-2014

Abstract

Unravelling the complex, coupled processes responsible for the spatial distribution of arsenic within groundwaters of South and South-East Asia remains challenging, limiting the ability to predict the subsurface spatial distribution of arsenic. Previous work illustrates that Himalayan-derived, near-surface (0 to 12 m) sediments contribute a substantial quantity of arsenic to groundwater, and that desorption from the soils and sediments is driven by the reduction of AsV and arsenic-bearing iron (hydr)oxides. However, the complexities of groundwater flow will ultimately dictate the distribution of arsenic within the aquifer, and these patterns will be influenced by inherent physical heterogeneity along with human alterations of the aquifer system. Accordingly, we present a unified biogeochemical and hydrologic description of arsenic release to the subsurface environment of an arsenic-afflicted aquifer in the Mekong Delta, Kandal Province, Cambodia, constructed from measured geochemical profiles and hydrologic parameters. Based on these measurements, we developed a simple yet dynamic reactive transport model to simulate one- and two-dimensional geochemical profiles of the near surface and aquifer environment to examine the effects of subsurface physical variation on the distribution of arsenic. Our results show that near-surface release (0–12 m) contributes enough arsenic to the aquifer to account for observed field values and that the spatial distribution of arsenic within the aquifer is strongly affected by variations in biogeochemical and physical parameters. Furthermore, infiltrating dissolved organic carbon and ample buried particulate organic carbon ensures arsenic release from iron (hydr)oxides will occur for hundreds to thousands of years.

Share

COinS