Document Type
Conference Proceeding
Publication Date
2019
Abstract
Spiking neural networks are biologically plausible counterparts of the artificial neural networks, artificial neural networks are usually trained with stochastic gradient descent and spiking neural networks are trained with spike timing dependant plasticity. Training deep convolutional neural networks is a memory and power intensive job. Spiking networks could potentially help in reducing the power usage. There is a large pool of tools for one to chose to train artificial neural networks of any size, on the other hand all the available tools to simulate spiking neural networks are geared towards computational neuroscience applications and they are not suitable for real life applications. In this work we focus on implementing a spiking CNN using Tensorflow to examine behaviour of the network and study catastrophic forgetting in the spiking CNN and weight initialization problem in R-STDP using MNIST data set. We also report classification accuracies that are achieved using N-MNIST and MNIST data sets.
Copyright Statement
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. doi: 10.1145/3354265.3354279
Publication Information
Vaila, Ruthvik; Chiasson, John; and Saxena, Vishal. (2019). "Feature Extraction using Spiking Convolutional Neural Networks". ICONS '19: Proceedings of the International Conference on Neuromorphic Systems, 14-1 - 14-8. https://dx.doi.org/10.1145/3354265.3354279