Document Type
Article
Publication Date
10-1-2009
DOI
http://dx.doi.org/10.1016/j.jnoncrysol.2008.12.021
Abstract
The change of chemical structure resulting after X–ray and photo-induced silver diffusion into chalcogenide glass (ChG) thin films is monitored by high resolution X-ray photoelectron spectroscopy (XPS). As40S60 and Ge30Se70 thin films, which are based on pyramids and tetrahedral structural units, are investigated as model materials. Survey, core level (As 3d, S 2p, Ge 3d, Ge 2p, Se 3d, Ag 3d5/2, O 1s, C 1s) and valence band spectra have been recorded and analyzed. Reference point for the binding energy is established by the subsequent deposition of thin gold film on top of the measured samples. The chemical structure gradually changes during diffusion of silver in all the samples. The mechanism of change depends on the chemical composition, thickness of the diffused silver layer and conditions of irradiation. It is revealed that surface oxygen can play important role in the Ag photodiffusion process, leading to phase separation on the surface of the films. Photodiffusion of Ag into As40S60 film leads to the formation of a uniform ternary phase and arsenic oxides on the surface. The formation of ethane-like Ge2(S1/2)6 units together with germanium oxidation are the main outcomes of X-ray induced Ag diffusion into Ge30Se70 film.
Copyright Statement
This is an author-produced, peer-reviewed version of this article. © 2009, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/). The final, definitive version of this document can be found online at Journal of Non-Crystalline Solids, doi: 10.1016/j.jnoncrysol.2008.12.021
Publication Information
Kovalskiy, A.; Jain, H.; and Mitkova, Maria. (2009). "Evolution of Chemical Structure During Silver Photodiffusion into Chalcogenide Glass Thin Films". Journal of Non-Crystalline Solids, 355(37-42), 1924-1929.