Document Type
Conference Proceeding
Publication Date
2018
DOI
http://dx.doi.org/10.1109/ICC.2018.8422414
Abstract
The large spectrum available in the millimeter- Wave (mmWave) band has emerged as a promising solution for meeting the huge capacity requirements of the 5th generation (5G) wireless networks. However, to fully harness the potential of mmWave communications, obstacles such as severe path loss, channel sparsity and hardware complexity should be overcome. In this paper, we introduce a generalized reconfigurable antenna multiple-input multiple-output (MIMO) architecture that takes advantage of lens-based reconfigurable antennas. The considered antennas can support multiple radiation patterns simultaneously by using a single RF chain. The degrees of freedom provided by the reconfigurable antennas are used to, first, combat channel sparsity in MIMO mmWave systems. Further, to suppress high path loss and shadowing at mmWave frequencies, we use a rate-one space-time block code. Our analysis and simulations show that the proposed reconfigurable MIMO architecture achieves full-diversity gain by using linear receivers and without requiring channel state information at the transmitter. Moreover, simulations show that the proposed architecture outperforms traditional MIMO transmission schemes in mmWave channel settings.
Copyright Statement
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. doi: 10.1109/ICC.2018.8422414
Publication Information
Almasi, Mojtaba Ahmadi; Mehrpouyan, Hani; Vakilian, Vida; Behdad, Nader; and Jafarkhani, Hamid. (2018). "A New Reconfigurable Antenna MIMO Architecture for mmWave Communication". 2018 IEEE International Conference on Communications (ICC): Proceedings, .