An Analysis of Transfer Learning Methods for Multilingual Readability Assessment
Document Type
Conference Proceeding
Publication Date
7-2020
Abstract
Recent advances in readability assessment have lead to the introduction of multilingual strategies that can predict the reading-level of a text regardless of its language. These strategies, however, tend to be limited to just operating in different languages rather than taking any explicit advantage of the multilingual corpora they utilize. In this manuscript, we discuss the results of the in-depth empirical analysis we conducted to assess the language transfer capabilities of four different strategies for readability assessment with increasing multilingual power. Results showcase that transfer learning is a valid option for improving the performance of readability assessment, particularly in the case of typologically-similar languages and when training corpora availability is limited.
Publication Information
Azpiazu, Ion Madrazo and Pera, Maria Soledad. (2020). "An Analysis of Transfer Learning Methods for Multilingual Readability Assessment". UMAP '20 Adjunct: Adjunct Publication of the 28th ACM Conference on User Modeling, Adaptation and Personalization, 95-100. https://dx.doi.org/10.1145/3386392.3397605