Document Type
Article
Publication Date
1-4-2016
Abstract
Fortilin, a pro-survival molecule, inhibits p53-induced apoptosis by binding to the sequence-specific DNA-binding domain of the tumor suppressor protein and preventing it from transcriptionally activating Bax. Intriguingly, fortilin protects cells against ROS-induced cell death, independent of p53. The signaling pathway through which fortilin protects cells against ROS-induced cell death, however, is unknown. Here we report that fortilin physically interacts with the antioxidant enzyme peroxiredoxin-1 (PRX1), protects it from proteasome-mediated degradation, and keeps it enzymatically active by blocking its deactivating phosphorylation by Mst1, a serine/threonine kinase. At the whole animal level, the liver-specific overexpression of fortilin reduced PRX1 phosphorylation in the liver, enhanced PRX1 activity, and protected the transgenic animals against alcohol-induced, ROS-mediated, liver damage. These data suggest the presence of a novel oxidative-stress-handling pathway where the anti-p53 molecule fortilin augments the peroxidase PRX1 by protecting it against degradation and inactivation of the enzyme. Fortilin-PRX1 interaction in the liver could be clinically exploited further to prevent acute alcohol-induced liver damage in humans.
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication Information
McDougal, Owen M. (2016). "Fortilin Potentiates the Peroxidase Activity of Peroxiredoxin-1 and Protects Against Alcohol-Induced Liver Damage in Mice". Scientific Reports, 6,18701-1 - 18701-16. http://dx.doi.org/10.1038/srep18701
Comments
For a complete list of authors, please see article.