Document Type

Article

Publication Date

12-2016

DOI

http://dx.doi.org/10.1016/j.bbrep.2016.08.009

Abstract

Ionic liquids have great potential in biological applications and biocatalysis, as some ionic liquids can stabilize proteins and enhance enzyme activity, while others have the opposite effect. However, on the molecular level, probing ionic liquid interactions with proteins, especially in solutions containing high concentrations of ionic liquids, has been challenging. In the present work the 13C, 15N-enriched GB1 model protein was used to demonstrate applicability of high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy to investigate ionic liquid–protein interactions. Effect of an ionic liquid (1-butyl-3- methylimidazolium bromide, [C4-mim]Br) on GB1was studied over a wide range of the ionic liquid concentrations (0.6–3.5 M, which corresponds to 10–60% v/v). Interactions between GB1 and [C4-mim]Br were observed from changes in the chemical shifts of the protein backbone as well as the changes in 15N ps-ns dynamics and rotational correlation times. Site-specific interactions between the protein and [C4-mim]Br were assigned using 3D methods under HR-MAS conditions. Thus, HR-MAS NMR is a viable tool that could aid in elucidation of molecular mechanisms of ionic liquid–protein interactions.

Copyright Statement

This document was originally published in Biochemistry and Biophysics Reports by Elsevier. This work is provided under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 license. Details regarding the use of this work can be found at: http://creativecommons.org/licenses/by-nc-nd/4.0/. doi: 10.1016/j.bbrep.2016.08.009

Share

COinS