Document Type


Publication Date




Background: Sequence mutations represent a driving force of adaptive evolution in bacterial pathogens. It is especially evident in reductive genome evolution where bacteria underwent lifestyles shifting from a free-living to a strictly intracellular or host-depending life. It resulted in loss of function mutations and/or the acquisition of virulence gene clusters. Bacillus anthracis shares a common soil bacterial ancestor with its closely related bacillus species but is the only obligate, causative agent of inhalation anthrax within the genus Bacillus. The anthrax-causing Bacillus anthracis experienced the similar lifestyle changes. We thus hypothesized that the bacterial pathogen would follow a compatible evolution path.

Results: In this study, a cluster-based evolution scheme was devised to analyze genes that are gained by or lost from B. anthracis. The study detected gene losses/gains at two separate evolutionary stages. The stage I is when B. anthracis and its sister species within the Bacillus cereus group diverged from other species in genus Bacillus. The stage II is when B. anthracis differentiated from its two closest relatives: B. cereus and B. thuringiensis. Many genes gained at these stages are homologues of known pathogenic factors such those for internalin, B. anthracis-specific toxins and large groups of surface proteins and lipoproteins.

Conclusion: The analysis presented here allowed us to portray a progressive evolutionary process during the lifestyle shift of B. anthracis, thus providing new insights into how B. anthracis had evolved and bore a promise of finding drug and vaccine targets for this strategically important pathogen.

Copyright Statement

This document was originally published by BioMed Central in BMC Bioinformatics Copyright restrictions may apply. DOI: 10.1186/1471-2105-10-S1-S3

Included in

Biology Commons