Title

Artificial Neural Networks - Memristor Circuit Modeling

Document Type

Student Presentation

Presentation Date

4-15-2013

Faculty Sponsor

Elisa Barney Smith

Abstract

Artificial Neural Networks (ANNs) are a biologically-inspired tool for pattern recognition and learning systems. Software implementations of ANNs have been used with measurable success in applications ranging from robotics to medical fields. A prospect of creating hardware implementations has emerged with the realization of the memristor by Boise State University's Neuromorphic Group. Ground work has been successfully done with system-level simulation for basic logic operations utilizing an ideal memristor model. The research being done explores new ways of adapting current setups to the fabricated memristor's physical device characteristics. The system-level simulation setup and associated algorithms are currently being adjusted to better suit these characteristics. Several circuit alterations are being simulated to assess prospective layouts. These changes will be thoroughly tested with varying parameters to provide thorough data for statistical analysis. These setups and resultant data will prove useful for the Neuromorphic group as their research continues towards implementing ANNs on-chip.

This document is currently not available here.

Share

COinS