Developing Nucleus Specific Finite Element Models Using Confocal Microscopy Scans

Document Type

Student Presentation

Presentation Date



College of Engineering


Department of Mechanical & Biomedical Engineering

Faculty Sponsor

Dr. Gunes Uzer


Emerging evidence suggests that nucleus have an inherent ability to adapt to mechanical force. Current approaches, however, are unable to quantify native forces generated in on cell nuclei without inserting sensors that affect cell function. Our goal in this research therefore is to use Finite Element Modeling in combination with confocal microscopy to generate mechanical models of nuclei.

To build nuclear Finite element models chromatin of mesenchymal stem cell nuclei were imaged with a Zeiss 810 confocal microscope at 120nm planar resolution at every 360nm. These images were developed into hexahedral based models. To calibrate the model, isolated live cell nuclei stiffness were deduced using an Atomic force microscope (AFM). Establishing this process will enable the creation of nucleus specific models that allow further research into how the mechanical stiffness of a nucleus is regulated.


This study was supported in-part by NIH COBRE Matrix Biology Program (1P20GM109095-01), Idaho NASA EPSCoR Research Initiation Grant under Award (NNX15AK35A) and NASA Idaho Space Consortium Seed Grant (NNX15AI04H).

This document is currently not available here.