Towards Nanoscale Electrical Thermometry for Heat Flow Measurements Across 2D Material Interfaces

Document Type

Student Presentation

Presentation Date



College of Engineering


Mechanical and Biomedical Engineering

Faculty Sponsor

David Estrada and Elton Graugnard


The development of advanced nanoelectronic devices based on emergent two-dimensional nanomaterials has the potential to transform energy by reducing energy consumption in nanoelectronics and through new low-energy device design. The research presented here focuses on the development of an electrical thermometry platform using standard nanoscale processing techniques to characterize thermal transport properties of single layer two-dimensional transition metal dichalcogenides (TMDs) and their heterostructures. The proposed experiment will reveal fundamental mechanisms of thermal transport across 2D material interfaces. The 2D heterostructures currently being grown at Boise State University will be deposited onto membranes using chemical vapor deposition (CVD) processes. These monolayers of semiconducting materials will help understand the effect of phonon density of states mismatches on thermal transport processes. Following growth, electron beam lithography (EBL) will be used to fabricate an electrical thermometry platform across 2D material interfaces. The electrodes and measurement techniques will be designed to ensure a sub-mK temperature resolution. All electrical thermometry measurements will be performed using a four-probe measurement technique in a cryostat (5 to 850K). Fabricating the platform and exploring these interfaces could provide new insight into the thermal transport properties of 2D materials, leading to reduced power dissipation in nanoelectronic devices.

This document is currently not available here.