Document Type


Publication Date



Novel die-stacking schema using through-wafer interconnects require vias to be filled with electroplated Cu, resulting in thick copper films, and requiring an aggressive first-step CMP. This work investigates the effects of microstructure on CMP of copper films, which are not presently well understood. Bulk and local removal rates were investigated for several different microstructures. Surface orientation maps were created and the orientations of individual grains were correlated with topographical data to elucidate local removal behavior. Cu removal depends on the details of the microstructure, and certain microstructures allowed for either faster or more uniform removal of thick Cu films.

Copyright Statement

© The Electrochemical Society, Inc. 2010. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of the Electrochemical Society (ECS). The archival version of this work was published in Journal of the Electrochemical Society, 157(1), H120-H126. DOI: 10.1149/1.3254163