Topological Model of Type II Deformation Twinning in 10M Ni-Mn-Ga

Document Type


Publication Date



The structure of type II twins in 10M Ni-Mn-Ga is modeled using the topological method. This method predicts the same twinning parameters as the kinematic model of Bevis and Crocker. Furthermore, topological modeling provides mechanistic insight into boundary migration rates, the twinning stresses and their temperature dependence. A type II twin is envisaged to form from a precursor, which is its type I conjugate. Disconnections on the precursor k1 plane align into a tilt wall, which, after the relaxation of the rotational distortions, forms the type II boundary parallel on average to the k2 plane. The component defects may align into a sharp wall or relax by kinking into a less orderly configuration. Both interfaces can host additional glissile disconnections whose motion along a boundary produces combined migration and shear. The ease of motion of these defects increases with their core width, and this, in turn, decreases with increasing sharpness of the boundary. Some experimental evidence in other materials suggests that type II twins can reduce their interfacial energy by adopting a configuration of low-index facets, which reduces twin boundary mobility. Topological modeling suggests that such a coherently faceted structure is unlikely in 10M Ni-Mn-Ga, in agreement with the high mobility of type II twin boundaries.