Document Type

Article

Publication Date

9-2021

Abstract

A direct-write method to fabricate a strain sensor directly on a structure of interest is reported. In this method, a commercial graphene ink is printed as a square patch (6 mm square) on the structure. The patch is dried at 100 °C for 30 min to remove residual solvents but the printed graphene remains in an insulative state. By scanning a focused laser (830 nm, 100 mW), the graphene becomes electrically conductive and exhibits a piezoresistive effect and a low temperature coefficient of resistance of −0.0006 °C−1. Using this approach, the laser defines a strain sensor pattern on the printed graphene patch. To demonstrate the method, a strain sensor was directly fabricated on a 3D-printed test coupon made of ULTEM 9085 thermoplastic. The sensor exhibits a gauge factor of 3.58, which is significantly higher than that of commercial foil strain gauges made of constantan. This method is an attractive alternative when commercial strain sensors are difficult to employ due to the high porosity and surface roughness of the material structure under test.

Comments

For a complete authors, please see the article.

Copyright Statement

This is the Accepted Manuscript version of an article accepted for publication in Flexible and Printed Electronics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/2058-8585/abf0f8

Available for download on Thursday, September 01, 2022

Share

COinS