Properties of As-Deposited and Heat-Treated Ni-Mn-Ga Magnetic Shape Memory Alloy Processed by Directed Energy Deposition

Document Type


Publication Date



Ni-Mn-Ga magnetic shape memory alloy was processed by laser metal deposition, an additive manufacturing method. Powder used for deposition was crushed from a cast 10M martensite Ni-Mn-Ga ingot. The deposited sample was ferromagnetic and showed a 14M martensite with no detected macroscopic composition differences throughout, except for a thin layer between substrate and deposit. Layer-by-layer deposition resulted in a layered microstructure due to differences in local thermal histories, and the sample's broad transformation temperature range is proposed to originate from the resulting variations in microstructure. Although the sample is clearly polycrystalline, columnar grains span deposition layers, which is potentially favorable to twin boundary motion. After a homogenizing and ordering heat treatment, transformations regained a typical narrow hysteresis and saturation magnetization increased, while grain growth and/or recrystallization took place. The results show the promise of laser-based additive manufacturing processes for production of magnetic shape memory alloys.