Dots-on-Plots: A Web Application to Analyze Stress–Strain Curves From Tensile Tests of Soft Tissue

Document Type


Publication Date



The calculation of tensile mechanical properties from stress–strain curves is a fundamental step in characterizing material behavior, yet no standardized method exists to perform these calculations for soft tissue. To address this deficiency, we developed a free web application called Dots-on-Plots that fully automates the calculation of tensile mechanical properties from stress–strain curves. The analyzed mechanical properties include the strength, strain, and energy at four points of interest (transition, yield, ultimate, and rupture), and the linear modulus. Users of Dots-on-Plots can upload multiple files, view and download results, and adjust threshold settings. This study determined a threshold setting that minimized error when calculating the transition point, where the stress–strain curve “transitions” from a nonlinear “toe” region to a linear region. Using the optimal threshold (2% stress deviation from a linear region fit), Dots-on-Plots calculated the transition strains from twenty tensile experiments of human meniscus to be 0.049 ± 0.007, which nearly matched the known transition strain values of 0.050 ± 0.006 (determined using finite element parameter optimization). The sensitivity of the calculated transition strain to the shape of various stress–strain curves was analyzed using sets of model-generated synthetic data. This free web application offers a convenient and reliable tool to systematically enhance the speed, transparency, and consistency of mechanical analysis across biomedical research groups.