Document Type

Article

Publication Date

2-1-2012

DOI

http://dx.doi.org/10.1016/j.csda.2011.07.016

Abstract

A copula density is the joint probability density function (PDF) of a random vector with uniform marginals. An approach to bivariate copula density estimation is introduced that is based on a maximum penalized likelihood estimation (MPLE) with a total variation (TV) penalty term. The marginal unity and symmetry constraints for copula density are enforced by linear equality constraints. The TV-MPLE subject to linear equality constraints is solved by an augmented Lagrangian and operator-splitting algorithm. It offers an order of magnitude improvement in computational efficiency over another TV-MPLE method without constraints solved by log-barrier method for second order cone program. A data-driven selection of the regularization parameter is through K-fold cross-validation (CV). Simulation and real data application show the effectiveness of the proposed approach. The MATLAB code implementing the methodology is available online.

Copyright Statement

This is an author-produced, peer-reviewed version of this article. © 2009, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/). The final, definitive version of this document can be found online at Computational Statistics & Data Analysis, doi: 10.1016/j.csda.2011.07.016

Included in

Mathematics Commons

Share

COinS