Document Type


Publication Date



The main phase of silicic volcanism from the Afro-Arabian large igneous province preserves some of the largest volcanic eruptions on Earth, with six units totaling >8,600 km3 dense rock equivalent (DRE). The large volumes of rapidly emplaced individual eruptions present a case study for examining the tempo of voluminous silicic magma generation and emplacement. Here were report high-precision 206Pb/238U zircon ages and show that the largest sequentially dated eruptions occurred within 48 ± 34 kyr (29.755 ± 0.023 Ma to 29.707 ± 0.025 Ma), yielding the highest known long-term volumetric extrusive rate of silicic volcanism on Earth. While these are the largest known sequential silicic supereruptions, they did not cause major global environmental change. We also provide a robust tie-point for calibration of the geomagnetic polarity timescale by integrating 40Ar/39Ar data with our 206Pb/238U ages to yield new constraints on the duration of the C11n.1r Subchron.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.