Document Type


Publication Date



The Middle Fork Salmon River watershed spans high-elevation mixed-conifer forests to lower-elevation shrub-steppe. In recent decades, runoff from severely burned hillslopes has generated large debris flows in steep tributary drainages. These flows incised alluvial fans along the mainstem river, where charcoal-rich debris-flow and sheetflood deposits preserve a record of latest Pleistocene to Holocene fires and geomorphic response. Through deposit sedimentology and 14C dating of charcoal, we evaluate the processes and timing of fire-related sedimentation and the role of climate and vegetation change. Fire-related deposits compose ~66% of the total measured fan deposit thickness in more densely forested upper basins versus ~33% in shrub-steppe-dominated lower basins. Fires during the middle Holocene (~8000 - 5000 cal yr BP) mostly resulted in sheetflood deposition, similar to modern events in lower basins. Decreased vegetation density during this generally warmer and drier period likely resulted in lower-severity fires and more frequent but smaller fire-related sedimentation events. In contrast, thick fire-related debris-flow deposits of latest Pleistocene-early Holocene (~13,500-8000 cal yr BP) and late Holocene (< 4000 cal yr BP) age are inferred to represent higher-severity fires, though data in the former period are limited. Widespread fires occurred in both upper and lower basins within the Medieval Climatic Anomaly (1050-650 cal yr BP) and the early Little Ice Age ca. 550 cal yr BP. We conclude that a generally cooler late Holocene climate and a shift to denser lodgepole pine forests in upper basins by ~2500 cal yr BP provided fuel for severe fires during episodic droughts.

Copyright Statement

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at The Holocene, published by SAGE. Copyright restrictions may apply. doi: 10.1177/0959683615571423