Document Type


Publication Date




Estimating evapotranspiration using the complementary relationship can serve as a proxy to more sophisticated physically based approaches and can be used to better understand water and energy budget feedbacks. The authors investigated the existence of complementarity between actual evapotranspiration (ET) and potential ET (ETp) over natural vegetation in semiarid desert ecosystems of southern Idaho using only the forcing data and simulated fluxes obtained from Noah land surface model (LSM) and North American Regional Reanalysis (NARR) data. To mitigate the paucity of long-term meteorological data, the Noah LSM-simulated fluxes and the NARR forcing data were used in the advection–aridity (AA) model to derive the complementary relationship (CR) for the sagebrush and cheatgrass ecosystems. When soil moisture was a limiting factor for ET, the CR was stable and asymmetric, with b values of 2.43 and 1.43 for sagebrush and cheatgrass, respectively. Higher b values contributed to decreased ET and increased ETp, and as a result ET from the sagebrush community was less compared to that of cheatgrass. Validation of the derived CR showed that correlations between daily ET from the Noah LSM and CR-based ET were 0.76 and 0.80 for sagebrush and cheatgrass, respectively, while the root-mean-square errors were 0.53 and 0.61 mm day--1 .

Copyright Statement

© Copyright 2013 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at ( or from the AMS at 617-227-2425 or DOI: 10.1175/JHM-D-11-067.1