Document Type

Article

Publication Date

8-1-2008

DOI

http://dx.doi.org/10.1175/2007JHM892.1

Abstract

This paper examines the role of soil moisture in quantifying drought through the development of a drought index using observed and modeled soil moisture. In Nebraska, rainfall is received primarily during the crop-growing season and the supply of moisture from the Gulf of Mexico determines if the impending crop year is either normal or anomalous and any deficit of rain leads to a lack of soil moisture storage. Using observed soil moisture from the Automated Weather Data Network (AWDN), the actual available water content for plants is calculated as the difference between observed or modeled soil moisture and wilting point, which is subsequently normalized with the site-specific, soil property–based, idealistic available water for plants that is calculated as the difference between field capacity and wilting point to derive the soil moisture index (SMI). This index is categorized into five classes from no drought to extreme drought to quantitatively assess drought in both space and time. Additionally, with the aid of an in-house hydrology model, soil moisture was simulated in order to compute model-based SMI and to compare the drought duration and severity for various sites. The results suggest that the soil moisture influence, a positive feedback process reported in many earlier studies, is unquestionably a quantitative indicator of drought. Also, the severity and duration of drought across Nebraska has a clear gradient from west to east, with the Panhandle region experiencing severe to extreme drought in the deeper soil layers for longer periods (>200 days), than the central and southwestern regions (125–150 days) or the eastern regions about 100 days or less. The anomalous rainfall years can eliminate the distinction among these regions with regard to their drought extent, severity, and persistence, thus making drought a more ubiquitous phenomenon, but the recovery from drought can be subject to similar gradations. The spatial SMI maps presented in this paper can be used with the Drought Monitor maps to assess the local drought conditions more effectively.

Copyright Statement

© Copyright 2008 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/) or from the AMS at 617-227-2425 or copyright@ametsoc.org. DOI: 10.1175/2007JHM892.1

Share

COinS