A Voronoi Diagram subdivides a space into regions.
- These regions are called Voronoi Cells.
- The objects inside these regions are called Voronoi sites.
Each cell consists of points that are closer to one site than to all other sites.

Unlike standard Voronoi Diagrams, Generalized Voronoi Diagrams separate entire objects.
- Using GVDs, we can easily determine:
 - what object is closest to a particular point
 - which objects are neighbors to other objects
 - what path to follow to avoid collisions between objects

An octree is a memory efficient tree structure where each node has eight children.
- To improve construction performance, we implement Tero Karras’ algorithm:
 1) We convert cartesian coordinates into Morton order by interleaving the bits.
 2) We sort the Morton codes using a parallel radix sort.
 3) We use the sorted Morton codes to construct a binary radix tree.
 4) We traverse the leaves of the radix tree up to the root, creating the octree along the way.

Karras’ Algorithm produces a vertex octree, which if surfaced would give us a standard voronoi diagram. However, we need entire facets to be separated to get a generalized voronoi diagram.

The edges of GVD cells are curved, and require more CPU time and memory. Current GVD algorithms use lines on a grid to approximate curves, but most techniques either fail on dense datasets or are too slow to be useful.

- To improve performance, we break up GVD construction into manageable work items.
- These work items are solved in parallel on readily available graphics cards.
- In parallel, we:
 1) build a vertex octree
 2) use the vertex octree to create a facet octree
 3) perform a color wavefront on the facet octree.
 4) use the color wavefront to surface the GVD.

- Using the Vertex Octree to Create a Facet Octree

- After creating the facet octree, we assign colors to corners of the octnodes that intersect objects.
- We continually propagate colors to neighbor vertices until all vertices have been colored.

- Surfacing the Generalized Voronoi Diagram

- Given a color wavefront...
 we compute GVD-edge intersections
 and connect them with the GVD centerpoint.

In 3D, we compute the 2D GVD for each face of a given node, and then triangulate the 2D GVDs with the cell’s GVD centers.

- Generating the Color Wavefront

- Building the Vertex Octree

- Given a Vertex Octree...
 We identify cells, which contain two or more objects...
 And then subdivide until each node contains only one object.

1. What is a Voronoi Diagram?
2. How is a Generalized Voronoi Diagram Different?
3. Our Focus
4. Difficulties Computing the Generalized Voronoi Diagram
5. Algorithm Overview
6. Building the Vertex Octree
7. Using the Vertex Octree to Create a Facet Octree
8. Generating the Color Wavefront
9. Surfacing the Generalized Voronoi Diagram
10. Results
11. References