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ABSTRACT

Pell’s equation has intrigued mathematicians for centuries. First stated as Archimedes’

Cattle Problem, Pell’s equation, in its most general form, X2 − P · Y 2 = 1, where P

is any square free positive integer and solutions are pairs of integers, has seen many

approaches but few general solutions. The eleventh century Indian mathematician

Bhaskara solved X2 − 61 · Y 2 = 1 and, in response to Fermat’s challenge, Wallis and

Brouncker gave solutions to X2−151 ·Y 2 = 1 and X2−313 ·Y 2 = 1. Fermat claimed

to posses a general solution, but it wasn’t until 1759 that Leonard Euler published

the first general solution to Pell’s Equation. In fact, it was Euler who, mistakenly,

first called the equation Pell’s Equation after the 16th century mathematician John

Pell. Pell had little to do with the problem and, though Pell made huge contributions

to other fields of mathematics, his name is inexplicably linked to this equation.

One natural generalization of the problem is to allow for 1 to be any integer k.

This yields the Pell-Like equation X2 − P · Y 2 = k, where P is any prime and k is

any integer. In fact, on his way to the solution of X2 − 61 · Y 2 = 1, Bhaskara solved

many Pell-Like equations; although at the time this was not his goal.

Neglecting any time considerations, it is possible, using current methods, to deter-

mine the solvablility of all Pell-Like equations. Whereas some have claimed that these

methods solve the problem, we shall illustrate that a decision as to the solvability of

many Pell-Like equations is computationally unfeasible.
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From a computational standpoint, there are two fundamental questions associated

with Pell-Like equations. First, is there an efficient means to decide if solutions exist?

Second, if a particular Pell-Like equation is solvable, is there an efficient means to

find all solutions? These are, respectively, the Pell-Like decision and search problems.

The problem of finding an efficient solution to the Pell-Like decision and search

problems, for all Pell-Like equations, remains unsolved. In what lies ahead we hope

to shed some illuminating light on these problems and give a partial solution. Our

tools are Modular Arithmetic, Gauss’ Quadratic Reciprocity Law, and the theory of

Continued Fractions. We review these as well as historical efforts on these problems

in Chapter 1.

Once we have developed the necessary theory for the Quadratic Reciprocity law

and the theory of Continued Fractions, we will use these ideas in Chapter 2 to fur-

ther develop a partial criterion for the solvability of Pell-Like equations. Using the

Quadratic Reciprocity law we will develop a series of tests that efficiently decide the

unsolvability of many Pell-Like equations. Using the Theory of Continued Fractions,

we will develop in Chapter 3 the necessary tools to solve the Pell Like search problem

for a specific subset of all Pell-Like equations. We show that all solutions taken on by

convergents in the continued fraction expansion of
√
P are taken on within the first

two iterations of the period.

Chapter 4 presents cryptographic applications of Pell-Like equations. We will de-

fine and prove the existence of a cryptographic group and then discuss its applications
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to many types of cryptosystems. We conclude with a discussion of a cryptographic

attack that uses the Theory of Continued Fractions.

For all results from classical Number Theory which we do not prove we refer the

reader to [2]. For those results from the Theory of Continued Fractions that we do

not prove, we refer the reader to [8], [2], and [9].
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Chapter 1

INTRODUCTION

1.1 Preliminaries

1.1.1 Elementary Number Theory

Pure Mathematics on the whole is steeped in abstraction and uses highly complex

structures to discuss difficult topics. However, we will be working in the field of

mathematics known as Elementary Number Theory. Unbeknowest, one should not

be led into a false sense of security. The word ”elementary” merely indicates that

the techniques employed use no more than basic logic and the mathematics that is

familiar to an outstanding high school student.

Some topics that should be familiar are integer factorization, modular arithmetic,

divisibility, and basic proof strategies. For a good introduction to these topics please

see [2]. The most essential Number Theoretic topics, Quadratic Reciprocity and

Continued Fractions, will be discussed in the next three subsections.
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1.1.2 Quadratic Reciprocity

We now introduce the celebrated Law of Quadratic Reciprocity. First proved by Gauss

in 1795, the Law of Quadratic Reciprocity allows one to quickly decide whether or

not an integer is a square modulo an odd prime. Its proof, which we will state but

not prove, is difficult. According to Gauss, “[The proof] tortured me for the whole

year and eluded my most strenuous efforts before, finally, I got the proof...” [2].

We will first consider the notion of a square modulo an odd prime. Let p be an

odd prime, a ∈ Z and gcd(a, p) = 1. If X2 ≡ a mod p admits a solution, then a is a

quadratic residue modulo p. Otherwise, a is a quadratic non residue modulo p.

For example consider p = 7 and a = 2. Since X2 ≡ 2 mod 7 admits a solution,

namely 3 and 4, 2 is a quadratic residue modulo 7. The fact that there are two

solutions is no coincidence. Indeed, this follows from the fact that the integers,

modulo 7, form a field, namely Z7.

Now, consider p = 29 and a = 10. Since there is no integer, modulo 29 , that

solves X2 ≡ 10 mod 29 (as the reader may check), we say that 10 is a quadratic non

residue modulo 29.

There is a convenient way to denote that an integer is a quadratic (non)residue

modulo p, attributed to Adrien Marie Legendre (1752-1833). Let p be an odd prime

and gcd(a, p) = 1. The Legendre symbol (a/p) is a function (defined over Zx
p) given
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by the rule

(a/p) =


1 if a is a quadratic residue modulo p

−1 if a is a quadratic non residue modulo p

Above, we took note of the fact that X2 ≡ 2 mod 7 admits a solution and X2 ≡ 10

mod 29 admits no solution. Using the Legendre symbol, this may be expressed as

(2/7) = 1 and (10/29) = −1. The most striking feature of this function is that there

is an efficient (polynomial time) algorithm for computing its values for each odd prime

P . This algorithm is summarized in Theorems 1.1, 1.3, and 1.4.

That the Legendre function may be computed in polynomial time follows from

Jacobi’s generalization of both the Legendre function and the Law of Quadratic Reci-

procity to the case where P is any integer. Indeed, for it is the Jacobi function that

can be computed in polynomial time using Jacobi’s generalized Quadratic Reciprocity

Law.

Theorem 1.1 Let P be an odd prime and a, b ∈ Z. Further assume gcd(a, P ) =

gcd(b, P ) = 1. Then,

(a) If a ≡ b mod P, then (a/P ) = (b/P ).

(b) (a2/P ) = 1.

(c) (a · b/P ) = (a/P ) · (b/P ).

(d) (1/P ) = 1 and (−1/P ) = (−1)
p−1
2 .

Proof : If a ≡ b mod P, then X2 ≡ a mod P is solvable ⇔X2 ≡ b mod P is solvable.
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Thus, (a/P ) = 1⇔ (b/P ) = 1. This proves (a).

a solves X2 ≡ a2 mod P. Thus, (a2/P ) = 1, which proves (b).

To prove (c) we need Euler’s Criterion: For an odd prime P and a such that gcd(a, P ) =

1 we have a
p−1
2 ≡ (a/P ) mod P. For a proof see [2].

By Euler’s Criterion, (a · b/P ) ≡ (a · b) p−1
2 = a

p−1
2 · b p−1

2 ≡ (a/P ) · (b/P ) mod P . If

(a · b/P ) 6= (a/P ) · (b/P ) then since the Legendre symbol only takes on 1,−1 we must

have 1 ≡ −1 ≡ P − 1 mod P. But then, P |(2 − P ) ⇒ P |2, a contradiction. This

proves (c).

1 solves X2 ≡ 1 mod P and by Euler’s criterion we have (−1/P ) ≡ (−1)
p−1
2 mod P.

This proves (d). �

Now, with the above theorem at our disposal, we can decide whether or not a

particular integer is a quadratic residue modulo an odd prime P. For example consider

a = 18 and P = 7. Since 18 = 32 · 2, we have (18/7) = (32 · 2/7) = (32/7) · (2/7) =

1 · (2/7) = (2/7). We established above that (2/7) = 1. Thus, (18/7) = 1. That is,

X2 ≡ 18 mod 7 admits a solution.

Theorem 1.2 We have

(−1/P ) =


1 , if P ≡ 1 mod 4

−1 , if P ≡ 3 mod 4

Proof : If P ≡ 1 mod 4, then for some integer k, P = 4k + 1. Thus, by Theorem

1.1(d) we have (−1/P ) = (−1)
p−1
2 = (−1)

4k+1−1
2 = (−1)

4k
2 = 1. If P ≡ 3 mod 4,
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then for some integer k, P = 4k + 3. Thus, by Theorem 1.1(d) we have (−1/P ) =

(−1)
p−1
2 = (−1)

4k+3−1
2 = (−1)

2(k+1)
2 = (−1)k+1 = −1. �

We will not prove the next two important results, the second of which is the Law

of Quadratic Reciprocity.

Theorem 1.3 We have

(2/P ) =


1 , if P ≡ ±1 mod 8

−1 , if P ≡ ±5 mod 8

Theorem 1.4 (Gauss) Let P and q be distinct odd primes. We have

(P/q) =


(q/P ) , if P ≡ 1 mod 4 or q ≡ 1 mod 4

−(q/P ) , if P ≡ q ≡ 3 mod 4

We now have the ability to efficiently decide, given any odd prime P and integer

a such that gcd(a, P ) = 1, whether or not the congruence X2 ≡ a mod P admits a

solution. In effect, the Law of Quadratic Reciprocity is the final piece necessary to

solve the quadratic residue decision problem.

For example, consider the congruence X2 ≡ 29 mod 103. Since 29 ≡ 1 mod 4,

(29/103) = (103/29). But, since 103 ≡ 16 mod 29, we have (103/29) = (16/29) =

(42/29) = 1. Thus, (29/103) = 1.

This ends our preliminary discussion of Quadratic Reciprocity. In what lies ahead

we will see that Quadratic Reciprocity allows us to formulate a good first test for the
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solvability of any Pell-Like equation.

1.1.3 Continued Fractions

In 1759 Leonard Euler, using the theory of continued fractions, gave the first published

solution to Pell’s equation X2 − PY 2 = 1, where P is any prime. With this achieve-

ment Euler highlighted the importance of continued fractions and their connection to

Pell equations. We now develop the necessary theory.

A finite simple continued fraction is an expression of the form

a0 +
1

a1 + 1
a2+ 1

a3+ 1

...+ 1
an

,

where for 1 ≤ i ≤ n, ai ∈ N and a0 ∈ Z. For example, 170
53

= 3 + 1
4+ 1

1+ 1

4+ 1
1
2

.

We use the notation [a0, a1, a2, a3, ..., an] to stand for a0 + 1
a1+ 1

a2+ 1

a3+ 1

...+ 1
an

. We call

the ai partial quotients. For m < n, the number whose continued fraction expansion

is [am, am+1, ..., an] is known as a complete quotient in the continued fraction expan-

sion of [a0, a1, a2, a3, ..., an]. We may write [a0, a1, a2, a3, ..., an] = [a0, a1, ..., am−1, X],

where X = [am, am+1, ..., an].

The continued fraction made from cutting off the expansion after the mth partial

quotient is called the mth convergent and is denoted Cm. We will often refer to the

numerators and denominators of convergents and denote them as Ck = pk

qk
.

Thus, the continued fraction for 170
53

may be written as [3, 4, 1, 4, 2]. The conver-
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gents of 170
53

are C0 = 3, C1 = 13
4

, C2 = 16
5

, C3 = 68
21

, C4 = 170
53

while the numerator of

C3 is p3 = 68 and the denominator of C2 is q2 = 5.

Clearly, all convergents are rational. Thus, every finite simple continued fraction

represents a rational number. Moreover, every rational can be expressed as a finite

simple continued fraction.

Theorem 1.5 Let X = [a0, a1, a2, a3, ...an] be a finite simple continued fraction.

Then, the numerators and denominators of X are given by the following formulas:

(a) p0 = a0, p1 = a1a0 + 1, and pk = akpk−1 + pk−2

(b) q0 = 1, q1 = a1, and qk = akqk−1 + qk−2.

Induction arguments allow one to prove the following three theorems.

Theorem 1.6 Let Ck = pk

qk
be the kth convergent of [a0, a1, a2, a3, ...an].

Then, pkqk−1 − qkpk−1 = (−1)k−1 for 1 ≤ k ≤ n.

Theorem 1.7 (qk : k > 1) forms a strictly increasing sequence.

Theorem 1.8 For all k ∈ N we have

(a) C0 < C2 < C4 < ...

(b) C1 > C3 > C5 > ...

(c) If k is odd and l is even, then Cl < Ck.
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A infinite simple continued fraction is an expression of the form

a0 +
1

a1 + 1
a2+ 1

a3+ 1
...

,

where for i ≥ 1, ai ∈ N and a0 ∈ Z.

To define the value of an infinite simple continued fraction we need a little elemen-

tary calculus. Let a0, a1, a2, a3, ... be an infinite sequence of integers. Then, the infinite

simple continued fraction [a0, a1, a2, a3, ...] has the value limn→∞[a0, a1, a2, ..., an].

Why does the limit exist? From Theorem 1.8 we know that {C2n} is strictly

increasing and {C2n+1} is strictly decreasing. Since both of these sequences are

bounded, by C1 and C0 respectively, the Bolzano Weierstrass Theorem implies that

their limits exist. Let α, α′ be these respective limits. Then, for every n ∈ N we have

|α−α′| ≤ |C2n+1−C2n| = |p2n+1

q2n
− p2n

q2n
| = | 1

q2n+1q2n
| < 1

q22n
. By Theorem 1.7, {qn}n>1

n∈N is

strictly increasing. As n becomes large 1
q22n

becomes arbitrarily small. Thus, α = α′.

Analogous to the fact that every rational has a finite simple continued fraction

representation, every irrational has an infinite simple continued fraction representa-

tion.

Theorem 1.9 Let [a0, a1, a2, a3, ...] be an infinite simple continued fraction. Then,

[a0, a1, a2, a3, ...] represents an irrational number.

Proof : Let α = [a0, a1, a2, a3, ...], Cn = pn

qn
, Cn+1 = pn+1

qn+1
. Suppose that α = r

s
∈ Q.

By Theorem 1.8, we know that Cn < α < Cn+1 or Cn+1 < α < Cn. Thus, 0 <
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|α−Cn| < |Cn+1−Cn| = |pn+1

qn+1
− pn

qn
| = 1

qnqn+1
. So, 0 < | r

s
− pn

qn
| < 1

qnqn+1
. Thus, when

we multiply this inequality by s · qn we obtain 0 < |r · qn − s · pn| < s
qn+1

. We know

{qn} is strictly increasing. Thus, for n large, we have s
qn+1

< 1. That is, for n large,

0 < |r · qn− s · pn| < 1. So, there is an integer between 0 and 1, a clear contradiction.

�

These results imply the following theorem.

Theorem 1.10 Every irrational number has a unique infinite simple continued frac-

tion representation.

Above, we defined the notion of a complete quotient for a finite simple contin-

ued fraction. This notion can be extended to infinite simple continued fractions.

Let [a0, a1, a2, a3, ...] be an infinite simple continued fraction and m ∈ N. Then, the

number whose continued fraction expansion is [am, am+1, am+2, ...] is known as a com-

plete quotient in the continued fraction expansion of [a0, a1, a2, a3, ...]. We may write

[a0, a1, a2, a3, ..., am−1, X], where X = [am, am+1, am+2, ...].

1.1.4 Periodic Continued Fractions

Now that we have developed the general theory, we talk about some specific continued

fractions that will greatly aid us in solving Pell-Like equations. These are periodic

continued fractions. Before we study the definition, we look at a concrete example.

We will now begin to expand
√

13 into an infinite simple continued fraction using

the continued fraction algorithm. For any x ∈ R, let [x] denote the greatest integer
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less than or equal to x.

Let a0 = [
√

13] = 3. Then,
√

13 = a0 + 1
X1

= 3 + 1
X1

. Thus, X1 = 1√
13−3
·
√

13+3√
13+3

=

3+
√

13
4

.

Let a1 = [3+
√

13
4

] = 1. Then, 3+
√

13
4

= a1+ 1
X2

= 1+ 1
X2

. Thus, X2 = 4√
13−1
·
√

13+1√
13+1

=

1+
√

13
3

.

Continuing this process we create Table 1.1, given below.

TABLE 1.1 Expansion of
√

13

n an Xn+1

0 3 3+
√

13
4

1 1 1+
√

13
3

2 1 2+
√

13
3

3 1 1+
√

13
4

4 1 3+
√

13
1

5 6 3+
√

13
4

6 1 1+
√

13
3

7 1 2+
√

13
3

Notice that X1 = X6, X2 = X7, and X3 = X8. This is no coincidence. Indeed, as

we shall see, the continued fraction expansion of
√

13 is periodic.

From our work above, we may write
√

13 = [3, 1, 1, 1, 1, 6, 1, 1, ...]. If we were to

continue the continued fraction algorithm to expand
√

13 into a continued fraction

we would see that
√

13 = [3, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, ...] (as the reader may

check). We will often write [3, 1, 1, 1, 1, 6] to stand for [3, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, ...]

and refer to the number of terms in the repeating block as the period.

A periodic simple continued fraction is one in which a sequential block of partial
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quotients repeats indefinitely. For example, [1, 2, 2, 2, 2, ...] = [1, 2],
√

7 = [2, 1, 1, 1, 4],

and 2+
√

13
3

= [1, 1, 6, 1, 1] are all periodic. The first two are periodic after an initial

stage and the third is purely periodic. The period of [1, 2] is 1 and the period of

[1, 1, 6, 1, 1] is 5.

Let us return to the expansion of
√

13. Notice that the real numbers X1 = 3+
√

13
4

,

X2 = 1+
√

13
3

, X3 = 2+
√

13
3

, X4 = 1+
√

13
4

, X5 = 3 +
√

13 all have purely periodic

continued fractions; namely X1 = [1, 1, 1, 1, 6], X2 = [1, 1, 1, 6, 1], X3 = [1, 1, 6, 1, 1],

X4 = [1, 6, 1, 1, 1] ,X5 = [6, 1, 1, 1, 1]. This, as well, is no coincidence. In fact, given

the periodic nature of the continued fraction expansion for
√

13 it is essential that

X1,...,X5 have purely periodic continued fraction expansions.

The numbers X1,...,X5 are known as reduced quadratic irrationals. A quadratic

irrational is a number that solves a quadratic equation with integer coefficients and

whose discriminant is positive but not a perfect square. All quadratic irrationals

have the form A + B ·
√
D, where A,B ∈ Q and D ∈ Z is not a perfect square. If

α = A+B
√
D is a quadratic irrational, then so is α′ = A−B

√
D. In fact, α and α′

both satisfy the same quadratic equation. The number α′ is the conjugate root of α.

The properties of conjugates are summarized in the following theorem.

Theorem 1.11 Let α and β be quadratic irrationals. Then the following hold:

(a) (α± β)′ = α′ ± β′.

(b) (α · β)′ = α′ · β′.

(c) (α
β
)′ = α′

β′
.
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If α is a quadratic irrational such that 1 < α and −1 < α′ < 0 then α is said to be

a reduced quadratic irrational. The next theorem relates reduced quadratic irrationals

and numbers that have purely periodic continued fraction expansions. We will refer

to it as Galois’ Theorem.

Theorem 1.12 (Galois’ Theorem) α is a reduced quadratic irrational if and only

if the continued fraction for α is purely periodic. Moreover, if β is the continued

fraction for α but with the period reversed, then α′ = −1
β

.

We will mainly be concerned with the continued fraction expansions of
√
P , where

P is a prime. In fact, these continued fractions have a very interesting form, which is

summarized in the next theorem.

Theorem 1.13 Let P be a prime. Then,
√
P = [a0, a1, a2, a3, ..., a3, a2, a1, 2a0].

Proof : Let
√
P = [a0, a1, a2, a3, ...]. Note that

√
P is not a reduced quadratic ir-

rational, as
√
P > 1 ⇒ −

√
P < −1. However, since a0 = [

√
P ], a0 +

√
P is

reduced (since a0 +
√
P > 1 and −1 < a0 −

√
P < 0). Thus, by Galois’ Theo-

rem, the continued fraction for a0 +
√
P is purely periodic. Hence, fix an n so that

a0 +
√
P = [2a0, a1, a2, a3, ..., an]. So,

√
P = [a0, a1, a2, a3, ..., an, 2a0]. This yields

√
P − a0 = [0, a1, a2, a3, ..., an, 2a0]. So, 1√

P−a0
= [a1, a2, a3, ..., an, 2a0].

Let β be the continued fraction for a0+
√
P , but with the repeating block reversed.

Then, by Galois’ Theorem, we have β = −1
α′

= 1√
P−a0

= [an, an−1, ..., a2, a1, 2a0].
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So, [a1, a2, a3, ..., an, 2a0] = [an, an−1, ..., a2, a1, 2a0]. Thus, a1 = an, a2 = an−1,...,

an−1 = a2, an = a1. �

Once again returning to the partial quotients in the continued fraction for
√

13,

consider X2 = [1, 1, 1, 6, 1] and X4 = [1, 6, 1, 1, 1]. For illustrative purposes, let α =

X2. Then, the continued fraction for α with the repeating block reversed is β = X4.

Then, by Galois’ Theorem, α′ = −1
β

. So, α′ · β = −1. Taking conjugates, we obtain

α · β′ = −1. This illustrates the following observation.

Observation 1.14 Let α be a complete quotient in the continued fraction expansion

of
√
P , where P is prime. Then, β, the continued fraction for α with the repeating

block reversed, is also a complete quotient in the continued fraction expansion of
√
P ,

and moreover, α · β′ = −1.

To prove the statement in italics, notice that if β is not a complete quotient in the

continued fraction expansion of
√
P , then this contradicts the symmetric nature of

√
P that was established in Theorem 1.13. By Galois’ Theorem, α′ · β = −1. Then,

taking conjugates, we have α · β′ = −1.

1.2 Historical Solutions

1.2.1 The methods of Brahmagumpta and Bhaskara

The Indian mathematicians Brahmagumpta (ca. 600 AD) and Bhaskara (1114-1185)

developed methods for solving Pell equations [1]. In fact, Brahmagumpta challenged
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that ”Any person who can within a year solve X2− 92 · Y 2 = 1 is a mathematician”.

By this criterion, both Bhaskara and the eleventh century Indian mathematician A.

D. Jayadeva were mathematicians. Indeed, both Bhaskara and Jayadeva gave general

solutions to Pell’s equation.

The following identity, attributed to Brahmagumpta, is extremely useful for cre-

ating solutions to Pell-Like equations. We will refer to it as Brahmagumpta’s Identity

and use it often.

Theorem 1.15 (Brahmagumpta) If u2 − Pv2 = k and r2 − Ps2 = l then (ur ±

Pvs)2 − P (us± vr)2 = kl.

Proof : Notice that (ur + Pvs)2 = u2r2 + 2Puvrs+ P 2v2s2 and (us+ vr)2 = u2s2 +

2uvrs + v2r2. So, −P (us + vr)2 = −Pu2s2 − 2Puvrs − Pv2r2. So, kl = (u2 −

Pv2)(r2−Ps2) = r2(u2−Pv2)−Ps2(u2−Pv2) = (u2r2−Pv2r2)+(P 2v2s2−Pu2s2) =

(u2r2−Pv2r2)+(P 2v2s2−Pu2s2)+2Puvrs−2Puvrs = (u2r2 +2Puvrs+P 2v2s2)+

(−Pu2s2 − 2Puvrs− Pv2r2) = (ur + Pvs)2 − P (us+ vr)2 �

We now describe Bhaskara’s method for solving Pell equations. The following

lemma, attributed to Bhaskara, will simplify our work.

Theorem 1.16 (Bhaskara) Let N be square free and k a nonzero integer. If (x0, y0)

solves X2 −NY 2 = k, then for every integer m, (mx0 +Ny0, y0m+ x0) solves X2 −

NY 2 = k(m2−N). Moreover, if gcd(k, y0) = 1 and k · l = (my0 + x0) for some l ∈ Z

then k|(m2 −N) and k|(mx0 +Ny0).
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Proof : We have (mx0 + Ny0)2 = m2x2
0 + 2mNx0y0 + N2y2

0 and (y0m + x0)2 =

y2
0m

2 + 2x0y0m + x2
0. Thus, −N(y0 + m + x0)2 = −Ny2

0m
2 − 2Nx0y0m − Nx2

0. So,

(mx0+Ny0)2−N(y0m+x0)2 = m2x2
0+2mNx0y0+N2y2

0−Ny2
0m

2−2Nx0y0m−Nx2
0 =

m2x2
0+N2y2

0−Ny2
0m

2−Nx2
0 = (x2

0−Ny0)m2−(x2
0−Ny2

0)N = km2−kN = k(m2−N).

Now assume that gcd(k, y0) = 1 and k · l = (my0 + x0) for some l ∈ Z. Then,

k(1− l(x0−my0)) = k− (x0−my0)k · l = k− (x0−my0)(x0 +my0) = k−x2
0 +m2y2

0 =

m2y2
0−Ny2

0 = (m2−N)y2
0. Thus, k|(m2−N)y2

0. But, gcd(k, y0) = 1. So, k|(m2−N).

So, there is r ∈ Z such that kr = (m2 − N). As for k|(mx0 + Ny0), k(ml − ry0) =

mkl− kry0 = m(x0 +my0)− (m2−N)y = mx0 +m2y0−m2y0 +Ny0 = mx0 +Ny0.

�

We now describe Bhaskara’s Algorithm for solving Pell equations. Let P be any

prime. We wish to solve X2−PY 2 = 1. Choose integers a, b, k such that a2−Pb2 =

k, and gcd(k, b) = 1. Thus, by Bhaskara’s Lemma, for any integer m, we have

(ma + Pb)2 − P (mb + a)2 = k(m2 − P ). Multiplying this equation by 1
k2 yields the

equation (ma+Pb
k

)2 − P ( bm+a
k

)2 = m2−P
k

.

We choose m such that k|mb + a and |m2−P
k
| is as small as possible. Thus, by

Bhaskara’s Lemma, (ma+Pb
k

)2−P ( bm+a
k

)2 = m2−P
k

is a Pell-like equation. If m2−P
k

= 1,

then we are done. If m2−P
k
6= 1 then we let a′ = ma+Pb

k
, b′ = bm+a

k
, and k′ = m2−P

k
.

Thus, we obtain (a′)2 − P (b′)2 = k′. Moreover, notice that gcd(k′, b′) = 1.

Once again using Bhaskara’s Lemma and multiplying by 1
(k′)2

, we arrive at

(m
′a′+Pb′

k′
)2 − P ( b

′m′+a′

k′
)2 = (m′)2−P

k′
for any integer m′. We choose m′ such that
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k′|m′b′ + a′ and | (m
′)2−P
k′
| is as small as possible and conclude that (m

′a′+Pb′

k′
)2 −

P ( b
′m′+a′

k′
)2 = (m′)2−P

k′
is another Pell-like equation. If (m′)2−P

k′
= 1, then we are done.

If (m′)2−P
k′

6= 1, then we continue this process. We will not prove that this particular

algorithm always produces a solution to X2 − PY 2 = 1. In the next section we will

give a systematic method for always finding solutions to Pell’s equation. We now give

an example to illustrate Bhaskara’s Algorithm.

Example 1.17 Bhaskara’s algorithm applied to X2 − 61Y 2 = 1. Consider 82 − 61 ·

12 = 3. For any m ∈ Z+, we have (8m+61
3

)2 − P (8+m
3

)2 = m2−61
3

. We now find m such

that 3|m+ 8 with |m2−61
3
| as small as possible. This yields 392 − 61 · 52 = −4 [1].

TABLE 1.2 Bhaskara’s Method Applied to X2 − 61Y 2 = 1

Step a b k
1 8 1 3
2 39 5 -4
3 164 21 -5
4 453 58 5
5 1523 195 4
6 5639 722 -3
7 29718 3805 -1
8 469849 60158 -3
9 2319527 296985 4
10 9747957 1248098 5
11 26924344 3447309 -5
12 90520989 11590025 -4
13 335159612 42912791 3
14 1766319049 226153980 1

Continuing this process, noting that gcd(−4, 5) = 1 we arrive at (39m+305
−4

)2 −
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P (5m+39
−4

)2 = m2−61
−4

. We now look for m such that −4|5m+ 39 and |m2−61
−4
| is as small

as possible. This yields 1642 − 61 · 212 = −5 [1].

Continuing this process we yield a string of fourteen solved Pell-Like equations,

as shown in Table 1.2. The fourteenth of these equations is 17663190492 − 61 ·

2261539802 = 1 [1]. That Bhaskara had the ability, sans calculator or modern alge-

braic notions, to solve Pell equations, is remarkable.

1.2.2 Wallis-Brounker Method

In 1657, Pierre de Fermat, arguably the best Number Theorist of his time, issued

a challenge to the English Mathematician John Wallis. Fermat asked Wallis to, in

general, find an integer y such that dy2 + 1 is a square integer, where d is any non

square integer [2]. In this subsection we will discuss the method devised by Wallis

and his patron, Lord William Brounker.

We will now consider the solvability of X2 − 7Y 2 = 1. Through trial and error

one quickly arrives at (8, 3) as the least positive solution to X2 − 7Y 2 = 1. However,

for explanatory purposes, this equation allows us to easily digest the Wallis-Brounker

Method.

The smallest square bigger than 7 is 32 = 9. So, 7 = 32 − 2. Clearly, for any

integer m, 7m2 = (3m)2 − 2m2 . What we are looking for here is m ∈ Z such that

(3m)2−2m2 +1 is a square. Since m = 1 does not do the trick, we move on to m = 2.

This yields 7 · 22 = (3 · 2)2 − 2 · 22 = 20, which does not work either. We try m = 3.
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This yields 7 · 32 = (3 · 3)2 − 2 · 32 = 63. We write 63 = (3 · 3)2 − 2 · 32 = 82 − 1 and

substitute this into 7 · 32 = (3 · 3)2 − 2 · 32 = 63 to obtain 7 · 32 = 82 − 1 which yields

82 − 7 · 32 = 1.

In [2], Wallis and Brounker used this method to solve X2 − 151Y 2 = 1 and

X2 − 313Y 2 = 1. However, the Wallis-Brounker Method for solving Pell equations

does not work in general.

1.2.3 The Euler-Lagrange General Solution

While Wallis and Brounker were able to solve particular Pell equations, Leonard Euler

gave the first published general solution in 1759 [2]. Although, it was Lagrange who

gave the first proof of Theorem 1.21, which asserts that all solutions to Pell equations

may be found among the convergents in the continued fraction expansion of
√
P

where P is prime and X2 − PY 2 = 1 [2]. Lagrange also proved that the continued

fraction expansion of any quadratic irrational is periodic from some point onward.

For a proof of this remarkable theorem, see [8].

To prove Theorem 1.19 we will need the following.

Theorem 1.18 Let X ∈ R−Q and a
b
∈ Q with gcd(a, b) = 1 and b ≥ 1.

If |X − a
b
| < 1

2b2
, then a

b
is a convergent in the continued fraction expansion of X.

As an aside, Hurwitz proved that for every irrational X there are infinitely many

p
q
∈ Q such that |X − p

q
| < 1√

5q2
. The 5 cannot be enlarged. Moreover, Thue, Siegel,

and Roth proved that for algebraic irrationals, the exponent 2 cannot be enlarged.
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This is the beginning of approximation theory. See [8].

Theorem 1.19 If (p, q) is a solution to X2−PY 2 = 1, then p
q

is a convergent in the

continued fraction expansion of
√
P .

Proof : Since p2−Pq2 = 1, we have (p−q
√
P )(p+q

√
P ) = 1. Thus, p

q
−
√
P = 1

q(p+q
√
P )

and p > q (since p ≤ q ⇒ p ≤ q
√
P ⇒ p− q

√
P ≤ 0⇒ 1 ≤ 0).

Thus, 0 < p
q
−
√
P <

√
P

q(q
√
P+q

√
P )

=
√
P

2q2
√
P

= 1
2q2

. So, by Theorem 1.18, p
q

is a

convergent in the continued fraction expansion of
√
P . �

We now show that all Pell equations are solvable. To do this we need the following

facts. First, if X = [a0, a1, a2, ..., an, Xn+1], then we may write X = Xn+1pn+pn−1

Xn+1qn+qn−1
and

for all n ∈ N, pnqn−1 − qnpn−1 = (−1)n−1 [8].

Theorem 1.20 If r is the length of the period in the continued fraction expansion of

√
P , then p2

kr−1 − Pq2
kr−1 = (−1)kr where k runs through all natural numbers and pk

qk

is any convergent in the continued fraction expansion of
√
P .

Proof : Let k ∈ N. By Theorem 1.13,
√
P = [a0, a1, a2, a3, ..., a3, a2, a1, 2a0]. So, a0 +

√
P = [2a0, a1, a2, ..., a2, a1]. Thus, we may write

√
P = [a0, a1, a2, ..., akr−1, a0 +

√
P ].

By the remark above, we have a0 +
√
P = a0+

√
Ppkr−1+pkr−2

a0+
√
Pqkr−1+qkr−2

, which gives rise to the

equation Pqkr−1+(a0qkr−1+qkr−2)
√
P = (a0pkr−1+pkr−2)+pkr−1

√
P . Thus, Pqkr−1 =

(a0pkr−1 +pkr−2) and (a0qkr−1 + qkr−2) = pkr−1, which yields pkr−2 = Pqkr−1−a0pkr−1

and qkr−2 = pkr−1 − a0qkr−1.

By the above we have pkr−1qkr−2−qkr−1pkr−2 = (−1)kr−2 = (−1)kr. So, pkr−1(pkr−1−
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a0qkr−1)− qkr−1(Pqkr−1 − a0pkr−1) = p2
kr−1 − Pq2

kr−1. Thus, p2
kr−1 − Pq2

kr−1 = (−1)kr.

�

Consider X2 − 19 · Y 2 = 1. Using the continued fraction algorithm we find that

√
19 = [4, 2, 1, 3, 1, 2, 8], where the period is 6. Thus, by Theorem 1.20, X2−19·Y 2 = 1

is solvable, and moreover, p5
q5

= 170
39

, p11
q11

= 57799
13260

, p17
q17

= 19651490
4508361

, p23
q23

= 6681448801
1532829480

are

particular solutions. Indeed, as the reader may check, 1702 − 19 · 392 = 1, 577992 −

19 · 132602 = 1, 196514902 − 19 · 45083612 = 1, 66814488012 − 19 · 15328294802 = 1.

Theorem 1.20 may be used to prove the following. We will generalize Theorem

1.21 in section 3.2.

Theorem 1.21 Let r be the length of the period in the continued fraction expansion

of
√
P .

(a) If r is even, then all positive solutions to X2 − PY 2 = 1 are given by X = pkr−1

and Y = qkr−1, k = 1, 2, 3, ....

(b) If r is odd, then all positive solutions to X2 − PY 2 = 1 are given by X = p2kr−1

and Y = q2kr−1, k = 1, 2, 3, ....

To implement Theorem 1.21, one must be able to determine if the length of the

period, r, is even or odd. In fact, computing r is at the very heart of the matter, for,

according to [10], for some constant A, we have A·log(P ) < r < 0.72
√
P ·log(P ) and

it is anticipated that A ·
√
P < r < 0.72

√
P ·log(P ). Thus, it is anticipated that the

time it takes to compute r may not happen in polynomial time.
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We will now give a criterion for recursively finding all positive solutions to Pell

equations, but first, some terminology. We will often refer to the smallest positive

solution to a Pell equation as the fundamental solution.

Theorem 1.22 Let (x1, y1) be the fundamental solution to X2−PY 2 = 1. Then, all

solutions to X2 − PY 2 = 1 are given by (xn, yn) where xn + yn
√
P = (x1 + y1

√
P )n,

where n runs through all Positive Integers.

By Theorem 1.21, we know that all solutions to X2 − PY 2 = 1 are among the

convergents in the continued fraction expansion of
√
P . The next theorem generalizes

this result.

Theorem 1.23 (Lagrange) If (p, q) is a solution to X2 − PY 2 = k and |k| <
√
P ,

then p
q

is a convergent in the continued fraction expansion of
√
P .

1.3 The Pell Class Approach

We now introduce a method for determining the solvability of Pell-Like equations.

As we shall see, this approach is not efficient in any sense. However, the Pell Class

approach does give us a good place to start.

Let P be any prime, k any integer, and (a, b), (r, s) be solutions to X2 − PY 2 =

k. Then, (a, b) and (r, s) are said to be associated if for some solution (u, v) to

X2−PY 2 = 1 we have (au±Pbv, av±bu) = (r, s). Notice that this is well defined by
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Brahmagumpta’s Identity. Observe that being ”associated” is an equivalence relation.

An equivalence class for this equivalence relation is said to be a Pell Class.

Let K be a Pell Class for X2−PY 2 = k and (x0, y0) ∈ K. Suppose that y0 is the

smallest positive second coordinate appearing in a pair in K. Then, x0 is a uniquely

determined positive integer. We call (x0, y0) the primitive solution of the class K. If

(u, v) is a solution to X2 − PY 2 = k and v is the smallest second coordinate among

all positive second coordinates of solutions to X2 − PY 2 = k and u is positive, then

we call (u, v) the fundamental solution to X2 − PY 2 = k.

The theory of Pell Classes yields tight bounds that may be used to search for the

fundamental solution of Pell-Like equations. The main theorem is the following.

Theorem 1.24 Let P be prime and (x1, y1) be the fundamental solution of X2 −

PY 2 = 1. If (u,v) is the fundamental solution of X2 − PY 2 = k, then 0 ≤ |u| ≤√
k(x1 + 1)/2 and 0 ≤ v ≤ y1

√
k/(2(x1 + 1)).

From a computational standpoint, the question as to the solvability of any equa-

tion may be formulated into two problems: a decision problem, and a search problem.

The decision problem seeks an efficient algorithm with an output of solvable or not

solvable when given any instance of an equation. The search problem seeks to find

all solutions, provided solutions exist, in a reasonable amount of time.

Phrased in terms of the Pell Class approach, the Pell-Like decision and search

problems for a prime P and integer k are (respectively): Is there an efficient means

to decide if there is a nonempty Pell Class and Is there an efficient method for finding



23

the primitive solution in each Pell Class.

Moreover, by Theorem 1.23, when |k| <
√
P and X2 − PY 2 = k is solvable, then

all primitive solutions of the Pell Classes associated with k are to be found among the

convergents of the continued fraction expansion of
√
P . These matters are examined

further in section 3.2.
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Chapter 2

A GENERAL CRITERION FOR SOLVABILITY

2.1 Introduction

Disregarding any time considerations, Theorem 1.24 may be used to determine whether

any Pell-Like equation is solvable or not.

Example 2.1 The Pell-Like equation X2−53Y 2 = 28. According to Theorem 1.24, if

X2−53Y 2 = 28 is solvable its fundamental solution (u,v) must lie within the following

bounds: 0 ≤ |u| ≤ [
√

28(66249 + 1)/2] = 963 and 0 ≤ v ≤ [9100
√

28/(2(66249 + 1))] =

132, where (66249, 9100) is the fundamental solution to X2 − 53Y 2 = 1. With a

little work, one may find that u = 9 and v = 1 is the fundamental solution to

X2 − 53Y 2 = 28.

Example 2.2 The Pell-Like equation X2−43Y 2 = 35. According to Theorem 1.24, if

X2−43Y 2 = 35 is solvable its fundamental solution (u,v) must lie within the following

bounds: 0 ≤ |u| ≤ [
√

35(3482 + 1)/2] = 246 and 0 ≤ v ≤ [532
√

35/(2(3482 + 1))] =

37, where (3482, 532) is the fundamental solution to X2 − 43Y 2 = 1. After checking

all 9, 102 possible combinations of (u, v) we eventually see that X2 − 43Y 2 = 35 is

not solvable.
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With regards to computational efficiency, the question of solvability for these par-

ticular Pell-Like equations are no match for modern computers. But, what happens

when k gets large? It is not hard to see that, as k →∞, [
√
k(x1 + 1)/2] grows with-

out bound. Thus, Theorem 1.24, though a nice tool, does not allow one to efficiently

decide if a particular Pell-Like equation is solvable, especially when k gets big.

Example 2.3 X2 − 313Y 2 = 172635965. If this equation is solvable, its funda-

mental solution (u, v) will lie within the following bounds: 0 ≤ |u| ≤ 94216351720,

0 ≤ v ≤ 942163517200, where (32188120829134849, 1819380158564160) is the funda-

mental solution to X2 − 313Y 2 = 1.

Using the methods of 2.4 we will be able to show that X2−313Y 2 = 172635965 is

not solvable. We use MAPLE to gain a rough estimate on the amount of time it would

take, using the Pell Class approach, to determine that X2−313Y 2 = 172635965 is not

solvable. Using MAPLE on a Pentium D powered computer, with a processor speed of

3.0 GHz, it can be determined that it takes roughly 0.0000000062 seconds to perform

an arithmetic operation. Thus, neglecting the time it takes to make comparisons, it

takes 4 · 0.0000000062 = 0.0000000248 seconds to check if X2 − 313Y 2 = 172635965

is solvable for a particular pair of integers chosen from their respective ranges is

solvable or not. We have 94216351720 · 942163517200 = 8.876720931× 1022 possible

pairs to check. Thus, it would, roughly, take 0.0000000248 · 8.876720931 × 1022 =

2.201426791 × 1015 seconds to decide the unsolvability of X2 − 313Y 2 = 172635965.

This is about 611, 507, 442, 000 hours which is about 69, 806, 785 years.
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Thus, in this particular example, with k = 172635965 relatively small, it is not

hard to see that, using this approach, even with our modern high powered computing

machines, a decision as to whether or not X2 − 313Y 2 = 172635965 is solvable will

take a considerable amount of time.

Recall, from section 1.3, that the question of solvability of any equation may be

formulated into two problems: a decision problem, and a search problem. Using these

classifications, we now define the Pell-Like decision and search problems. The Pell-

Like decision problem is: Given a prime P and an integer k, is there an efficient

means to decide if X2−PY 2 = k is solvable? Assuming for a prime P and integer k,

X2 − PY 2 = k is solvable, the Pell-Like search problem for P and k is: Can we find

all primitive solutions in the Pell classes of X2 − PY 2 = k in a reasonable amount

of time?

Notice that a general criterion for solvablilty is, in effect, a solution to a decision

problem. Thus, to find a general criterion for the solvability of Pell-Like equations

is the same as solving the Pell-Like equation decision problem for all instances of

Pell-Like equations.

The Pell Class approach does not solve either of these problems for all Pell-Like

equations. Indeed, for large k, as in example 2.3, the Pell Class approach does not

yield an efficient algorithm to answer the decision problem. Moreover, if for some

prime P and integer k, X2 − PY 2 = k is solvable, the Pell Class approach only

guarantees that one will find the fundamental solution. Still, the Pell Class approach
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is a step in the right direction and its power has been employed in the data collection

for this Thesis (see Appendix A.1).

In the rest of this and the next chapter we address the problem of finding a general

criterion for solvability of Pell-Like equations and give a partial solution. In effect,

we solve the Pell-Like decision problem for many, but not all, Pell-Like equations.

Most of the tests that we will develop throughout this chapter do not rely on

integer factorization. However, a few of the implementations based on the theorems

of Section 2.4 will rely heavily on the efficiency of integer factorization, which is

likely no more efficient than tests based on the Pell Class approach. Throughout this

chapter, we will give special attention to these considerations.

The next section gives an equivalent formulation of the Pell-Like decision problem.

2.2 The Square Polynomial Problem

In this section we will show that the decision problem for Pell-Like equations is

equivalent to the problem of deciding whether or not a particular second degree

polynomial with integer coefficients has a square integer value. We start with an

example.

Consider the question of solvability for X2 − 17 · Y 2 = 47. Since (47/17) = 1, we

know there is a ∈ Z such that a2 ≡ 47 mod 17. Equivalently, there is m ∈ Z such

that 17m = a2 − 47. If m = a2−47
17

is a square integer, then we are done. Indeed, for

if m = b2, then we have 17b2 = a2 − 47. Thus, a2 − 17b2 = 47.
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Recall that equivalence mod 17 is an equivalence relation and that a is a repre-

sentative of the equivalence class {a + 17n : n ∈ Z}. Thus, if m is not a square, we

may use the fact that (a+17 ·1)2 ≡ a2 ≡ 47 mod 17 to form 17m′ = (a+17 ·1)2−47.

If m′ = (a+17·1)2−47
17

is a square, then once again we are done.

What if m′ is not a square? Then, we may use the fact that (a+17 ·2)2 ≡ a2 ≡ 47

mod 17 to form 17m′′ = (a + 17 · 2)2 − 47 and check if m′′ = (a+17·2)2−47
17

is a square.

If m′′ is a square then we are done.

Continuing in this way we see that we have an infinitum of candidates for m

becoming a square. In other words, is it possible that for some n ∈ Z, (a+17·n)2−47
17

=

17n2 + 2an + a2−47
17

is a square? This is the square polynomial decision problem for

P = 17 and k = 47.

The general square polynomial decision problem is the following: does there exist

an algorithm that, for any odd prime P and k ∈ Z with (k, P ) = 1 decides if there is

for some a with k ≡ a2 mod P an n ∈ Z such that Pn2 − 2an+ a2−k
P

is a square?

The square polynomial and Pell-Like equation solvability decision problems for

specific P and k may be formulated in terms of Arithmetic functions.

Let P be prime, k ∈ Z, with (k/P ) = 1 and consider X2 − PY 2 = k. Since

(k/P ) = 1 we have (∃a ∈ Z), (a2 ≡ k mod P ) . Note that the algorithm of Tonelli-

Shanks, assuming the Generalized Riemann Hypothesis, efficiently finds an a ∈ Z

such that a2 ≡ k mod P .
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Define

Φ(P, k) =


1 if (∃n ∈ Z)(∃a ∈ ZP )(k2 mod P and Pn2 − 2an+ a2−k

P
) is a square

−1 otherwise

and

Ψ(P, k) =


1 if X2 − PY 2 = k is solvable

−1 otherwise

We now have the proper terminology to prove the following.

Theorem 2.4 Let P be an odd prime and k ∈ Z, with (k/P ) = 1.

Then, Ψ(P, k) = 1⇔ Φ(P, k) = 1.

Proof : Suppose Ψ(P, k) = 1. So, there are u,m ∈ Z such that u2 − Pm2 = k. Note

that u2 ≡ k mod P. To prove Φ(P, k) = 1 we must show that there is an integer n

such that Pn2− 2un+ u2−k
P

is a square. We have u2−k
P

= m2. Thus, we choose n = 0.

So, Φ(P, k) = 1.

Now, suppose Φ(P, k) = 1. That is, there are integers n, m and u ∈ ZP such that

u2 ≡ k mod P and Pn2 − 2un + u2−k
P

= m2. So, P 2n2 + 2Pun + u2 − k = pm2 ⇒

(u+ pn)2 − k = Pm2 ⇒ (u+ pn)2 − Pm2 = k. So, ((u+ pn),m) furnishes a solution
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to X2 − PY 2 = k. Thus, Ψ(P, k) = 1. �

This proves that the square polynomial decision problem is equivalent to the Pell-

Like decision problem.

2.3 The Legendre Test

The Legendre function and the Law of Quadratic Reciprocity provide our first test for

the solvability of Pell-Like equations. Consider the Pell-Like equation X2− 17 ·Y 2 =

−46. Using theorems 1, 2, 3, and 4 we compute (−46/17) = (−1/17) · (46/17) =

1 · (12/17) = (4/17) · (3/17) = 1 · (3/17) = (17/3) = (2/3) = −1. Thus, X2 ≡ −46

mod 17 admits no solution. In other words, X2 − 17 · Y 2 = −46 is not solvable. For

if X2 − 17 · Y 2 = −46 were solvable, then there would exist integers u, v such that

u2 − 17 · v2 = −46. But then, u2 − (−46) = 17 · v2. So, X2 ≡ −46 mod 17 admits

a solution and (−46/17) = 1, a clear contradiction. This illustrates the following

theorem.

Theorem 2.5 If (k/P ) = −1 then Ψ(P, k) = −1.

Proof : If X2 − PY 2 = k were solvable, then there are integers u, v such that u2 −

P · v2 = k. But then, u2 − k = P · v2. So, X2 ≡ k mod P admits a solution and

(k/P ) = 1, contradicting our assumption. �

Corollary 2.6 If (k/P ) = 1 and (l/P ) = −1 then X2 − PY 2 = kl is not solvable.
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The Legendre function and the Law of Quadratic Reciprocity open the door to

many other tests for unsolvability. These are addressed in the next subsection.

2.4 Legendre Style Unsolvability Tests

As the title suggests, this section uses Quadratic Reciprocity and other properties

of the Legendre function to characterize many tests for the unsolvability of Pell-Like

equations. Our first theorem is motivated by the desire to understand the behavior

of Pell-Like equations when k is negative.

Theorem 2.7 If P ≡ 3 mod 4 and (k/P ) = 1 then x2 − Py2 = −k is not solvable.

Proof : Let us suppose that x2 − Py2 = −k is solvable. So, there are r, s ∈ Z such

that r2 − Ps2 = −k. So, r2 − (−k) = Ps2. So, X2 ≡ −k mod P is solvable. So,

(−1/P ) · (k/P ) = (−k/P ) = 1. So, (−1/P ) = (−1/P ) · 1 = (−1/P ) · (k/P ) =

(−k/P ) = 1. But, by the Law of Quadratic Reciprocity, this only happens when

P ≡ 1 mod 4, contradicting our assumption. �

Example 2.8 Consider x2 − 11y2 = −5. Since (4, 1) solves x2 − 11y2 = 5, we have

(5/11) = 1. Since 11 ≡ 3 mod 4, we know, by Theorem 2.7, that x2 − 11y2 = −5 in

not solvable.

The next theorem yields a very general test for the unsolvability of a large class of

Pell-Like equations. Although we assume the factorization of k we will not actually

use factorization when implementing this theorem.
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Theorem 2.9 Let P ≡ 3 mod 4 and k = m2n with n square free. If X2 − PY 2 = k

is solvable, then n ≡ 1 mod 4.

Proof : Suppose that n ≡ 3 mod 4. Since x2−Py2 = k is solvable, there are u, v ∈ Z

such that u2 − Pv2 = m2n. We shall collect the following three facts:

(i) (n/P ) = 1.

(ii) If q is a prime divisor of n with q ≡ 3 mod 4 , then (q/P ) = −1.

(iii) Let r = |{q : q|n and q is an odd prime and q ≡ 3 mod 4}|. Then r is odd.

Since u2−Pv2 = m2 ·n, we have u2−m2 ·n = Pv2. So, X2 ≡ k mod P is solvable.

Thus, (n/P ) = (m2 · n/P ) = 1. This proves (i).

Now suppose that q is a prime divisor of n. So, n = q · n0 for some n0 ∈ Z. Thus,

u2−Pv2 = q·n0 and so X2 ≡ Pv2 mod q is solvable. So, (P/q) = (Pv2/q) = 1. By the

Quadratic Reciprocity Law, we know that, since P ≡ q ≡ 3 mod 4, (P/q) = −(q/P ).

So, −(q/P ) = 1. This proves (ii).

Let n = q1 · ... ·qr ·qr+1 · ... ·ql, where q1 ≡ ... ≡ qr ≡ 3 mod 4 and qr+1 ≡ ... ≡ ql ≡ 1

mod 4. If r is even then we may arrange these first r primes in pairs as follows:

(q1 · q2), (q3 · q4), ..., (qr−1 · qr). Then, for i even with 1 ≤ i ≤ r (qi−1 · qi) ≡ 9 ≡ 1 mod

4. But, then n = (q1 · q2) · (q3 · q4) · ... · (qr−1 · qr) · qr+1 · ... · ql ≡ 1 mod 4 contrary to

assumption. This proves (iii).

Again let n = q1 · ... · qr · qr+1 · ... · ql where q1 ≡ ... ≡ qr ≡ 3 mod 4 and qr+1 ≡ ... ≡

ql ≡ 1 mod 4. By (ii), we have (q1/P ) · ... · (qr/P ) = (−1) · ... · (−1) = (−1)r = −1,

since r is odd, by (iii). Also, (qr+1/P ) · ... · (ql/P ) = (1) · ... · (1) = (1)l−r. Thus, by (i)
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1 = (n/P ) = (q1 · ... · qr · qr+1 · ... · ql/P ) = (q1/P ) · ... · (qr/P ) · (qr+1/P ) · ... · (ql/P ) =

(−1)r · (1)l−r = −1, a clear contradiction. �

Theorem 2.9, when expressed using the contrapositive, yields a nice test for un-

solvability. We state this as the following corollary.

Corollary 2.10 Let k = m2n with n square free. If P ≡ n ≡ 3 mod 4, then

x2 − Py2 = k is not solvable.

The next corollary follows immediately.

Corollary 2.11 If P ≡ k ≡ 3 mod 4 and l ≡ 1 mod 4 then X2 − PY 2 = kl is not

solvable.

With Corollary 2.9 at our disposal, we can lay to rest the question of solvability

for many Pell-Like equations. For example, consider X2−31Y 2 = 1008. Since 1008 =

122 · 7 and 7 ≡ 3 mod 4, Corollary 2.10 allows us to conclude that X2− 31Y 2 = 1008

is not solvable.

In Example 2.2, we considered the solvability of the Pell-Like equation X2 −

43Y 2 = 35. Using a quick application of Corollary 2.10, we see that X2 − 43Y 2 = 35

is not solvable.

The next theorem requires that we know an odd prime factor of k.
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Theorem 2.12 Let q be an odd prime such that q divides k .

If x2 − Py2 = k is solvable, then (P/q) = 1.

Proof : Suppose that x2 − Py2 = k is solvable. So, there are u, v ∈ Z such that

u2−Pv2 = k. Since q divides k, we have k = q · k0 for some k0 ∈ Z. So, q|(u2−Pv2)

and thus (P/q) = (Pv2/q) = 1. �

Assuming that we can find an odd prime factor of k, the contrapositive to Theorem

2.12 paves the way for a nice test for unsolvability.

Corollary 2.13 Let q be an odd prime such that q divides k .

If (P/q) = −1, then x2 − Py2 = k is not solvable.

Example 2.14 In Example 2.3, we noted that we would have to check up to 94216351720

possible X values to see if X2−313Y 2 = 172635965 is or is not solvable. We computed

that this would take 69, 806, 785 years. But since 5|172635965 and (313/5) = −1, we

may use Corollary 2.13 to conclude that X2 − 313Y 2 = 172635965 is not solvable.

Corollary 2.15 Let q be an odd prime such that q divides k.

If P or q ≡ 1 mod 4 and (q/P ) = −1, then x2 − Py2 = k is not solvable.

Proof : Since P or q ≡ 1 mod 4, (P/q) = (q/P ) = −1. By Corollary 2.13, x2−Py2 =

k is not solvable. �

Regarding the next corollary, integer factorization is used to write k = m2n where

n is square free.
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Corollary 2.16 Let k = m2n where n is square free. If P ≡ 5 mod 8, and n is even

then x2 − Py2 = k is not solvable.

Proof : Suppose that there exists u, v ∈ Z such that u2−Pv2 = k (that is, x2−Py2 =

k is solvable). So, u2 − k = Pv2 and thus, (n/P ) = (m2n/p) = 1. Since 2|n there

is n0 ∈ Z such that n = 2 · n0. So, (2 · n0/P ) = (n/P ) = 1. But P ≡ 5 mod

8 ⇒ (2/P ) = −1 So, there must be another prime factor of n, say q such that

(q/P ) = −1 (otherwise (n/P ) = −1). But, n is square free. So, q is odd. Moreover,

P ≡ 5 mod 8 ⇒ P ≡ 1 mod 4. Thus, we may apply Corollary 2.13 to obtain that

x2 − Py2 = k is not solvable, contradicting our assumption. �

Example 2.17 X2 − 181Y 2 = 1908360. Then since 181 ≡ 5 mod 8 and 1908360 =

(18)2 · 5890 with 5890 = 2 · 5 · 19 · 31 even and square free, we have, by Corollary 2.16,

that X2 − 181Y 2 = 1908360 is not solvable.

2.5 Modulo N Unsolvability Tests

We now develop a relatively simple way to test for the unsolvability of Pell-Like

equations.

Theorem 2.18 (Mod N Test) If x2−Py2 = k is not solvable in Zn then x2−Py2 =

k is not solvable in Z.

Proof : If x2−Py2 = k is solvable in Z, then there are u, v ∈ Z such that u2−Pv2 = k.

The remainder upon dividing u2−Pv2 by n will be the same as the remainder in the
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division of k by n. Thus, u2 − Pv2 = k in Zn. Thus, by the contrapositive, we have

the result. �

Note that if x2−Py2 = k is solvable in Zn then it is not necessarily the case that

x2 − Py2 = k is solvable in Z.

Remark 2.19 Using the Mod N Test, we can define a probabilistic algorithm that,

when given a prime P and integer k as input, will yield an output of ’unsolvable’

or ’probably solvable’. For primes P1, P2, ..., Pg, define Q(P1, P2, ..., Pg, P, k) to be

the probability that X2 − PY 2 = k is unsolvable but for all 1 ≤ i ≤ g, X2 −

PY 2 = k is solvable in ZP i. We fix a base of primes B = {P1, P2, ..., Pg} such that

Q(P1, P2, ..., Pg, P, k) is small. Then, if for each Pi, X
2 − PY 2 = k is solvable in ZP i

we may conclude that it is highly likely that X2 − PY 2 = k is solvable. Moreover, if

there is at least one Pi for which X2 − PY 2 = k is not solvable in ZP i, the Mod Pi

Test allows us to conclude that X2 − PY 2 = k is not solvable.

That such a base of primes B = {P1, P2, ..., Pg} such that Q(P1, P2, ..., Pg, P ) is

small exists has yet be proven. Further research into the Pell-Like decision and search

problems should address this issue.

We now give an alternate proof of the weaker version of Theorem 2.14 discussed

in the previous section.

Theorem 2.20 Let P be prime and k odd with P ≡ 3 mod 4. If x2 − Py2 = k is

solvable, then k ≡ 1 mod 4.
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Proof : Notice that 22 ≡ 4 ≡ 0 and 32 ≡ 9 ≡ 1 mod 4. So, x2 ≡ 0 or 1 and y2 ≡ 0 or

1 mod 4. By direct calculation, we see that x2 − Py2 ≡ x2 − 3y2 ≡ 0, 1, or 2 mod 4.

Thus, if k ≡ 3 mod 4, x2 − Py2 = k is not solvable in Z4. Thus, by the mod N test,

x2 − Py2 = k is not solvable in Z. The result follows using the contrapositive. �

Using this exact same argument, but in Z8, allows one to prove the following.

Theorem 2.21 Let P be an odd prime. If P ≡ 1, 3, or 5 mod 8, and k ≡ 2 mod 4,

then x2 − Py2 = k is not solvable.

2.6 Solvability Tests

We now give some tests for the solvability of Pell-Like equations. The first was proved

in section 1.2.1.

Theorem 2.22 (Brahmagumpta) If u2 − Pv2 = k and r2 − Ps2 = l then (ur ±

Pvs)2 − P (us± vr)2 = kl.

Let us now consider the question of solvability of X2 − 29Y 2 = 575. Since 575 =

25 · 23 and X2 − 29Y 2 = 25 and X2 − 29Y 2 = 23 are both solvable, with solutions

(5, 0) and (38, 7), X2 − 29Y 2 = 575 is solvable by Theorem 2.22.
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Suppose we wish to find a purely positive solution to X2−PY 2 = a2. Clearly, (a, 0)

solves X2 − PY 2 = a2. Then, using Theorem 1.19, we obtain a solution, (x0, y0) to

X2−PY 2 = 1. Thus, by Brahmagumpta’s Identity (ax0, ay0) solves X2−PY 2 = a2.

Theorem 2.7 allowed us to partially answer the question of solvability for X2 −

PY 2 = k for k < 0 and P ≡ 3 mod 4. The following two theorems allow us to fully

answer this question when P ≡ 1 mod 4.

Theorem 2.23 Let P be prime. P ≡ 1 mod 4 if and only if x2 − Py2 = −1 is

solvable.

Proof : First suppose that x2 − Py2 = −1 is solvable. Then there are u, v ∈ Z such

that u2 − Pv2 = −1. So, u2 − (−1) = Pv2. So, (−1/P ) = 1 which, by Theorem 1.2,

only happens when P ≡ 1 mod 4.

Now suppose that P is a prime with P ≡ 1 mod 4. Let (x1, y1) be the fundamental

solution to X2 − PY 2 = 1. So, x2
1 − 1 = Py2

1. If x1 is even, then y1 is odd and we

have −1 ≡ P mod 4, contrary to assumption (since (2m)2 = 4m2 ≡ 0 mod 4 and

P (2m+1)2 = 4Pm2+4Pm+P ≡ P mod 4). Thus, x1 is odd. So, gcd(x1+1, x1−1) =

2.

Thus, for some choice of sign we have x1 ± 1 = 2a2 and x1 ∓ 1 = 2Pb2. So,

Py2
1 = (x1 − 1)(x1 + 1) = (2a2)(2Pb2) = 4Pa2b2. So, y1 = 2ab. Upon subtracting

x1 ∓ 1 = 2Pb2 from x1 ± 1 = 2a2 we have ±1 = a2 − Pb2. But b < y1 and (x1, y1) is

the fundamental solution to X2 − PY 2 = 1. So, we must have a2 − Pb2 = −1. �
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Theorem 2.23 yields an alternate approach to solving Pell equations when P ≡

1 mod 4. Using Brahmagupta’s identity, if (x0, y0) solves X2 − PY 2 = −1, then

(x2
0 + Py2

0, 2x0y0) solves X2 − PY 2 = 1.

Using Theorems 2.22 and 2.23, we are now able to describe the situation when

k < 0 and P ≡ 1 mod 4.

Theorem 2.24 If P ≡ 1 mod 4 then x2−Py2 = k is solvable if and only if x2−Py2 =

−k is solvable.

Proof : We assume P ≡ 1 mod 4. Thus, by Theorem 2.30 x2−Py2 = −1 is solvable. If

x2−Py2 = k is solvable then by Brahmagumpta’s Identity x2−Py2 = −k is solvable.

If we assume that x2 − Py2 = −k is solvable, then by Brahmagumpta’s Identity and

the fact that x2 − Py2 = −1 is solvable, we have that x2 − Py2 = (−1) · (−k) = k is

solvable. �

2.7 A Partial Criterion for Solvability

Using the results proven above, we now illustrate a partial criterion for the solvability

of Pell-Like equations. We will show that, for many Pell-Like equations, the decision

problem is solved. We begin by separating the problem into cases, proceed with tests

for unsolvability, and then conclude with a discussion of methods used to show that

Pell-Like equations are solvable.

Let P be any prime and k a positive integer. If (k/P ) = −1, then by the Legendre

Test, X2 − PY 2 = k is not solvable. Thus, assume (k/P ) = 1.
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We now separate the problem into two cases: k is a square and k is not a square.

If k = a2 for some integer a, then, (a, 0) solves X2−PY 2 = k. If we wish to obtain a

purely positive solution, we may use Brahmagumpta’s Identity with u, v ∈ Z+ such

that u2 − Pv2 = 1 to obtain (au, av) as a solution to X2 − PY 2 = a2 = k. That

there exists u, v ∈ Z+ with these properties follows from 1.2.3. With respect to

computational efficiency, the Intermediate Value Theorem provides an efficient test

to decide if a given integer is a square. See Appendix B.1 for a discussion of this test.

Having dealt with the cases when (k/P ) = −1 and k is a square, we now assume

that k is a quadratic residue modulo P and k is not a square. We now consider

unsolvability tests in the cases that k is odd and k is even.

Suppose that k is odd. If P ≡ k ≡ 3 mod 4, then by Corollary 2.10, X2−PY 2 = k

is not solvable (since k odd and k ≡ 3 mod 4 ⇒ n ≡ 3 mod 4). If this test fails to

be conclusive, we turn to the Mod N Test over a Pell Solvability Base as discussed

in Remark 2.19. If the Mod N Test yields that X2 − PY 2 = k is likely solvable, we

may try to find an odd prime factor of k and use Corollary 2.13 to further convince

ourselves of solvability. If, having tried these unsolvability tests, we have not found

conclusive evidence as to the unsolvability of X2 − PY 2 = k, we try to show that

X2 − PY 2 = k is solvable.

Example 2.25 X2 − 41 · Y 2 = 17325. Since (17325/41) = 1, the Legendre test is

inconclusive. After a little work, we see that 17325 is not a square. Integer factoriza-

tion yields 17325 = 32 · 52 · 7 · 11. We check (3/41), (5/41), (7/41), (11/41) and find
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that (7/41) = (11/41) = −1. Thus, by Corollary 2.13, X2 − 41 · Y 2 = 17325 is not

solvable.

Now suppose that k is even and write k = 2st, where t is odd. If s is even,

then we deal with the solvability of X2 − PY 2 = k by dealing with the solvability of

X2−PY 2 = t as we did in the case when k is odd, with one exception. We must, for

reasons to be discussed in 2.8, perform the Mod N Test on X2 − PY 2 = k and not

on X2−PY 2 = t. Note that corollary 2.10 allows us to conclude that X2−PY 2 = k

is not solvable if X2 − PY 2 = t is not solvable, provided P ≡ t ≡ 3 mod 4.

If s is odd, then we first test if P ≡ 1 or 3 or 5 mod 8 and k ≡ 2 mod 4. If so,

then we may conclude, by Theorem 2.21, that X2 − PY 2 = k is not solvable. As a

second test (if necessary) we apply the Mod N Test.

If s is odd and both Theorem 2.21 and the Mod N Test are inconclusive, we resort

to integer factorization and write k = m2n, where n is square free. So, n = 2 · n0

where n0 is odd. If P ≡ 5 mod 8, then by Corollary 2.16, X2 − PY 2 = k is not

solvable. If P ≡ 1 or 3 or 7 mod 8, we test using Corollary 2.13. If, at this point,

all of our tests for unsolvability have failed, we try to show that X2 − PY 2 = k is

solvable.

We now consider methods that may be employed to show the solvability of Pell-

Like equations.

Remark 2.26 Notice that if we can factor k, say k = k1 · ... · ki and show, for all

1 ≤ j ≤ i, that X2 − PY 2 = kj is solvable, then using Brahmagumpta’s Identity i
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times we have that X2−PY 2 = k is solvable. Observe that kj does not have to be a

prime. Moreover, the converse need not hold, as the next example illustrates.

Example 2.27 Consider X2 − 37 · Y 2 = 192. We may write 192 = 42 · 12 and

192 = 82 · 3. (7, 1) furnishes a solution to X2 − 37 · Y 2 = 12 and X2 − 37 · Y 2 = 42 is

clearly solvable. Thus, by Brahmagumpta’s Identity, X2 − 37 · Y 2 = 192 is solvable.

Using an implementation of the Pell Class approach, we see that X2 − 37 · Y 2 = 3 is

not solvable. Thus, we may not conclude that the unsolvability of X2 − 37 · Y 2 = 3

yields the unsolvability of X2 − 37 · Y 2 = 82 · 3 = 192.

Using methods to be discussed in Chapter three, it is computationally feasible

to check for the solvablility of X2 − PY 2 = 2, provided P > 3. Moreover, (2, 1)

solves X2 − 2Y 2 = 2 and X2 − 3Y 2 = 2 is unsolvable by the Legendre test. Thus, if

X2−PY 2 = 2 and X2−PY 2 = n0 are solvable, we can use Brahmagumpta’s Identity

to establish the solvablility of X2 − PY 2 = k, where k = m2 · n0 · 2. Moreover, (2, 1)

solves X2 − 2Y 2 = 2 and X2 − 3Y 2 = 2 is unsolvable by the Legendre test.

Example 2.28 Consider X2− 31Y 2 = 1650 = 2 · 33 · 25. (39, 7) solves X2− 31Y 2 =

2, (67, 12) solves X2 − 31Y 2 = 25, and (8, 1) solves X2 − 31Y 2 = 33. Thus, by

Brahmagumpta’s Identity, X2 − 31Y 2 = 1650 is solvable.

We now consider the case when k < 0. If P ≡ 1 mod 4 then we consider the

solvability of X2 − PY 2 = −k. Using Theorem 2.24, we know that X2 − PY 2 = k is

solvable if and only if X2−PY 2 = −k is solvable. Thus, when k < 0 and P ≡ 1 mod
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4 we may deal with the solvability of X2 − PY 2 = k by dealing with the solvability

of X2 − PY 2 = −k.

By Theorem 2.7, if P ≡ 3 mod 4 and X2−PY 2 = −k is solvable, then X2−PY 2 =

k is not solvable. But when P ≡ 3 mod 4 and X2−PY 2 = −k is not solvable Theorem

2.7 is inconclusive. Using methods discussed in the next chapter, we will be able to

deal with many more solvability questions for X2−PY 2 = k, provided |k| < 1+2
√
P .

Further research into the case when k < 0 and P ≡ 3 mod 4, may include work

similar to the following theorem. The proof requires a simple modification of the

proof of Theorem 2.10.

Theorem 2.29 Let P ≡ 3 mod 4 and k = −1 ·m2 · n with n square free. If n ≡ 1

mod 4, then X2 − PY 2 = k is not solvable.

2.8 An Arithmetic of Solvability

In this section we will discuss the difficulty of obtaining an answer to the full decision

problem and address a possible strategy for a solution.

Example 2.30 Refer to Table 2.1. In line 6, we see that X2 − 11Y 2 = 2 and

X2−11Y 2 = 7 are not solvable but X2−11Y 2 = 14 is solvable. In line 11 we see that

X2− 17Y 2 = 19 is solvable but X2− 17Y 2 = 2 and X2− 17Y 2 = 38 are not solvable.

Additionally, line 27 illustrates that X2 − 37Y 2 = 9 is solvable and X2 − 37Y 2 = 11

is not solvable and X2 − 37Y 2 = 99 is solvable. Moreover, line 16 illustrates that
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X2 − 37Y 2 = 5 and X2 − 37Y 2 = 2 are not solvable and X2 − 37Y 2 = 10 is not as

well.

These examples illustrate a seemingly pathological phenomenon. Fix a prime

P . Then, sometimes, two Pell-Like equations (in terms of P ), one solvable and

the other unsolvable may be combined to form a solvable Pell-Like equation. In

other instances these equations combine to form an unsolvable Pell-Like equation.

Moreover, sometimes two unsolvable Pell-Like equations (in terms of a fixed prime

P ) combine to yield a solvable Pell-Like equation.

Some of this behavior is easily understood using Corollaries 2.6 and 2.11. However,

a large portion of this phenomenon is not understood.

If we were able to decide, given a fixed prime, P and integers k, l, if X2−PY 2 = k·l

were solvable based on the solvability of X2 − PY 2 = k and X2 − PY 2 = l then we

would, in effect, be able to form an arithmetic of solvability in which, for a

fixed prime P , and an initial base of integers, say k1, k2, ..., kj, we could, by direct

computation, form the following infinite sets: S = {(P, k) : k = (k1)e1 · ... · (kj)ej and

X2−PY 2 = k is solvable} and U = {(P, k) : k = (k1)e1 · ... · (kj)ej and X2−PY 2 = k

is not solvable}.

Using the theorems of this chapter, we already have a partial arithmetic of solv-

ability. For a fixed prime P , and k1, k2, ..., kj with X2 − PY 2 = ki solvable for each

1 ≤ i ≤ j we can, using Brahmagumpta’s Identity, form the set A = {(P, k) : k =

(k1)e1 · ... · (kj)ej and X2 − PY 2 = k is solvable}. Clearly A ⊆ S.
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The major difference between this partial arithmetic of solvability and a full arith-

metic of solvability is that we assume that, for each 1 ≤ i ≤ j, X2 − PY 2 = ki is

solvable. In a full arithmetic of solvability we would be able to decide the solvability

of X2 − PY 2 = k · l from the solvability of X2 − PY 2 = k and X2 − PY 2 = l. Thus,

we would be able to decide if (P, k · l) ∈ SP or if (P, k · l) ∈ UP .

Example 2.31 Referring to table 2.1, we see that for P = 37 and base {2, 3, 7} we

have (37, 4), (37, 9) ∈ S37 while (37, 2), (37, 3), (37, 7) ∈ U37. However, (37, 12) ∈ S37.

Moreover, (37, 84) ∈ S37.

One pitfall of an arithmetic of solvability is its reliance on integer factorization.

Still, an arithmetic of solvability would be a nice tool for deciding the solvability

of many Pell-Like equations. Even if this approach is not employed in an eventual

solution to the Pell-Like decision problem, the phenomenon described in Example

2.30 is, in the author’s opinion, the major crux of the issue. Further study of the

Pell-Like decision problem should address this issue.

2.9 Conclusion

We have developed many efficient methods for determining the solvability and un-

solvability of a large subset of the set of all Pell-Like equations. Using the Law of

Quadratic Reciprocity we have been able to use the notion of quadratic residue to

develop many solid tests for unsolvability. Using the methods of Brahmagumpta we
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know how to combine solvable Pell-Like equations into solvable Pell-Like equations.

In Chapter 3 we will develop new ways to discuss the solvability of Pell-Like equations.

As mentioned above, the phenomenon illustrated in Example 2.30 is at the heart

of the issue. It is the author’s opinion that when this phenomenon is understood a

solution to the decision problem for Pell-Like equations will soon follow.

Another necessary consideration is the eventual meshing of the techniques pre-

sented in Chapter 2 with those we are about to present in Chapter 3. The work in

these chapters is, in a sense, disjoint. The author believes that when the notions of

Quadratic Reciprocity and Convergent Solutions are put together, a vast amount of

new understanding will result.

Additionally, we have only scratched the surface of what Time Complexity theory

has to offer to the problem. There is a great body of work waiting to be done on the

Pell-Like decision and search problems in this direction.

It is exciting, in the author’s opinion, to see where these considerations will take

us in our knowledge of Pell-Like equations.
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TABLE 2.1 X2 − P · Y 2 = k · l

Line P k Solvable? l Solvable? k · l Solvable?
1 3 3 not 2 not 6 is
2 3 11 not 2 not 22 is
3 3 11 not 3 not 33 is
4 3 23 not 2 not 46 is
5 7 7 not 2 is 14 not
6 11 2 not 7 not 14 is
7 11 2 not 11 not 22 is
8 11 2 not 19 not 38 is
9 17 4 is 2 not 8 is
10 17 17 is 2 not 34 not
11 17 19 is 2 not 38 not
12 19 3 not 2 not 6 is
13 19 19 not 2 not 38 is
14 23 2 is 23 not 46 not
15 31 3 not 11 not 33 is
16 37 5 not 2 not 10 not
17 37 4 is 3 not 12 is
18 37 3 not 7 not 21 is
19 37 3 not 9 is 27 is
20 37 4 is 7 not 28 is
21 37 11 not 3 not 33 is
22 37 11 not 4 is 44 is
23 37 3 not 16 is 48 is
24 37 9 is 7 not 63 is
25 37 11 not 7 not 77 is
26 37 12 is 7 not 84 is
27 37 11 not 9 is 99 is
28 41 4 is 2 not 8 is
29 41 9 is 2 not 18 is
30 41 16 is 2 not 32 is
31 43 3 not 2 not 6 is
32 43 2 not 7 not 14 is
33 43 7 not 3 not 21 is
34 43 19 not 2 not 38 is
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Chapter 3

CONTINUED FRACTIONS

3.1 The Middle Term Theorem

The Middle Term Theorem arose in conjunction with the solvability ofX2−PY 2 = −1

for a prime P. Below we give a discussion of the problem and a solution.

The Middle Term Theorem is intimately connected to our next theorem. We will

refer to it as Fermat’s Great Theorem since it was Fermat who gave the first statement

of the theorem. In fact, Fermat claimed to have a proof of the theorem, but never

published the result. Over a hundred years later, Euler published a proof.

Theorem 3.1 (Fermat’s Great Theorem) Let P be an odd prime.

Then, P ≡ 1 mod 4 if and only if there exists unique positive integers a, b with a < b

such that P = a2 + b2.

By Theorem 1.14,
√
P = [a0, a1, a2, a3, ..., a3, a2, a1, 2a0]. We call the sequence of

terms a1, a2, a3, ..., a3, a2, a1 the symmetric part of the continued fraction for
√
P . For

example, consider
√

13 = [3, 1, 1, 1, 1, 6] and
√

7 = [2, 1, 1, 1, 4]. Notice that for the

former the symmetric part has no middle term and that the latter does (namely 1).
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The Middle Term Theorem is the assertion that P ≡ 1 mod 4 if and only if the

continued fraction expansion for
√
P has no middle term. The following takes care

of the ”only if” part.

Theorem 3.2 Let P be an odd prime. If the continued fraction expansion for
√
P

has no middle term then P ≡ 1 mod 4.

Proof : We assume that the continued fraction expansion for
√
P has no middle

term. That is,
√
P = [a0, a1, a2, a3, ...am, am, ..., a3, a2, a1, 2a0] or equivalently

√
P =

[a0, a1, a2, a3, ...am, α], where α = [am, ..., a3, a2, a1, 2a0, a1, a2, a3, ..., am]. Thus, the

continued fraction for α is symmetrical. So, β = α, where β is the continued fraction

obtained from α by reversing the periodic part. Using Galois’ Theorem, we have

α′ = −1
β

. Thus, α · α′ = α′ · β = −1. But α is a quadratic irrational associated with

P and hence has the form α = u+
√
P

v
for u, v ∈ Z. Therefore, we have −1 = α · α′ =

u+
√
P

v
· u−

√
P

v
which is equivalent to P = u2 + v2. Thus, by Fermat’s Great Theorem,

P ≡ 1 mod 4. �

The ”if” part is the crux of the issue. Recall that, by Theorem 2.23, we have

P ≡ 1 mod 4⇔ X2 − PY 2 = −1 is solvable. We show that X2 − PY 2 = −1 solvable

⇒ the continued fraction for
√
P has no middle term. To do so, we require a theorem

and a lemma.

Recall that the complete quotients in the continued fraction expansion of
√
P are

expressions of the form k+
√
P

h
. Moreover, given the symmetric nature of the continued

fraction expansion of
√
P established in Theorem 1.13, it is clear that their are finitely
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many complete quotients for a prime P . We let ui = ki+
√
P

hi
denote the ith complete

quotient to appear in the continued fraction for
√
P .

Theorem 3.3 Let pn

qn
be the nth convergent in the continued fraction expansion of

√
P . Then, p2

n − P · q2
n = (−1)n−1 · hn+1.

Proof : We may write
√
P = [a0, a1, a2, ..., an, un+1], where un+1 denotes the (n +

1)st complete quotient in the continued fraction expansion for
√
P . As in the proof

of Theorem 1.20 we have
√
P = un+1pn+pn−1

un+1qn+qn−1
. But, un+1 = kn+1+

√
P

hn+1
. So,

√
P =

(kn+1+
√
P )pn+pn−1

(kn+1+
√
P )qn+qn−1

. Multiplying by (kn+1 +
√
P )qn+qn−1 and simplifying yields (Pqn)+

(qnkn+1 + hn+1qn−1)
√
P = (pnkn+1 + hn+1pn−1) + pn

√
P . So, Pq2

n = pnkn+1qn +

hn+1pn−1qn and p2
n = qnkn+1pn + hn+1qn−1pn which yields p2

n − Pq2
n = qnkn+1pn +

hn+1qn−1pn − pnkn+1qn − hn+1pn−1qn. Since qnkn+1pn + hn+1qn−1pn − pnkn+1qn −

hn+1pn−1qn = hn+1qn−1pn−hn+1pn−1qn = hn+1(qn−1pn− pn−1qn), we have p2
n−Pq2

n =

hn+1(qn−1pn−pn−1qn). But, qn−1pn−pn−1qn = (−1)n−1. So, p2
n−Pq2

n = (−1)n−1hn+1,

as desired.

Notice that Theorem 1.20 is a special case. For a proof of the following see [5].

Lemma 3.4 (Euler) hm = 1⇔ m = rk for some k ∈ N.

Theorem 3.5 If X2 − PY 2 = −1 is solvable then the continued fraction expansion

of
√
P has no middle term.

Proof : We prove the contrapositive. That is, suppose that the continued fraction
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for
√
P has a middle term. So,

√
P = [a0, a1, a2, a3, ...am, am+1, am, ..., a3, a2, a1, 2a0].

Thus the length of the period, r, is even.

Let l ∈ N and suppose that p2
l − Pq2

l = −1. By Theorem 3.3, we must have

−1 = (−1)l−1hl+1. So, hl+1 = 1. So, by Lemma 3.4, l + 1 = rt for some t ∈ N. That

is, l = rt−1. But then, by Theorem 1.20, we have −1 = p2
l −Pq2

l = p2
tr−1−P ·q2

tr−1 =

(−1)tr = 1, since r is even. This clear contradiction shows that, X2 − PY 2 = −1 is

not solvable by the convergents in the continued fraction expansion of
√
P .

But, | − 1| <
√
P . Thus, by Theorem 1.23, the only solutions to X2 − PY 2 = −1

are among the convergents in the continued fraction expansion of
√
P . Thus, applying

the contrapositive, the result follows. �

Using Theorem 3.5 and Theorem 2.23, we now have the following.

Theorem 3.6 If P ≡ 1 mod 4, then the continued fraction expansion for
√
P has no

middle term.

The Middle Term Theorem gives one of many equivalent characterizations of prime

numbers P with P ≡ 1 mod 4. These are summarized in the following theorem.

Theorem 3.7 Let P be an odd prime. Then the following are equivalent:

(a) P ≡ 1 mod 4.

(b) There are unique positive integers a < b such that P = a2 + b2.

(c) The continued fraction expansion for
√
P has no middle term.

(d) The period of the continued fraction expansion of
√
P is odd.



52

Proof : The equivalence of (a), (b), and (c) has been established above. We use (c) to

establish (d). Suppose that (c) holds. So,
√
P = [a0, a1, a2, ..., am, am, ..., a2, a1, 2a0].

So, r = 2 · |{a1, a2, ..., am}|+ |{2a0}|, which is clearly odd.

Now suppose that (d) holds. If the continued fraction expansion for
√
P had a mid-

dle term, then
√
P = [a0, a1, a2, ..., am, an, am, ..., a2, a1, 2a0]. So, r = 2·|{a1, a2, ..., am}|+

|{2a0}|+ |{an}|, which is clearly even, contradicting our assumption. Thus, we have

(c).

We will now apply the Middle Term Theorem to prove an interesting result about

the continued fraction expansions of primes congruent to 1 mod 4. First, an example.

Consider
√

29 = [5, 2, 1, 1, 2, 10]. By Fermat’s Great Theorem, 29 may be written

as a sum of squares, namely 29 = 52 + 22. This equation gives rise to the equation

2+
√

29
5
· 2−

√
29

5
= −1, which allows one to show that 2+

√
29

5
is a reduced quadratic

irrational. Moreover, applying the continued fraction algorithm we obtain 2+
√

29
5

=

[1, 2, 10, 2, 1]. Thus, 2+
√

29
5

is a complete quotient in the continued fraction expansion

of
√

29.

We will now prove the general case. We begin with two preliminary theorems.

Theorem 3.8 (a) Let P be an odd prime with P ≡ 1 mod 4 and P = a2 + b2 be

the unique sums of squares representation of P. Then, a+
√
P

b
and b+

√
P

a
are reduced

quadratic irrationals. Moreover, a+
√
P

b
and b+

√
P

a
are the only reduced quadratic irra-

tionals associated with
√
P that have a symmetrical continued fraction expansion.

(b) If P ≡ 3 mod 4 then no reduced quadratic irrationals associated with
√
P have a
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symmetrical continued fraction expansion.

Proof : The equation P = a2 + b2 gives rise to the equations a+
√
P

b
· a−

√
P

b
= −1 and

b+
√
P

a
· b−

√
P

a
= −1. Clearly, a+

√
P

b
> 1. Thus, a−

√
P

b
< 0. Moreover, |a−

√
P

b
| = 1

a+
√

P
b

.

So, 0 < |a−
√
P

b
| < 1. Thus, −1 < a−

√
P

b
< 0 and a+

√
P

b
is reduced. A similar argument

shows that b+
√
P

a
is reduced.

Let α = a+
√
P

b
and β be obtained from the continued fraction expansion for α with

the period reversed. So, α′ = a−
√
P

b
. By Galois’ Theorem, α′ = −1

β
. So, α′ · β = −1.

But, α · α′ = −1. So, α · α′ = α′ · β. Thus, α = β and the continued fraction for

α is symmetrical. A similar argument shows that the continued fraction for b+
√
P

a
is

symmetrical. This establishes that there are at least two reduced quadratic irrationals

associated with
√
P that have a symmetrical continued fraction expansion.

Let r, s ∈ Z+ with {r, s} 6= {a, b}. Suppose that γ = r+
√
P

s
is a reduced quadratic

irrational that has a symmetrical continued fraction expansion. So, γ = βγ, where βγ

denotes the continued fraction obtained from the continued fraction expansion for γ

with the period reversed. Then, by Galois’ Theorem γ·γ′ = γ′·βγ = −1⇔ P = r2+s2,

contradicting the uniqueness of the sums of squares representation. This proves (a).

Suppose that P ≡ 3 mod 4 and for h, k ∈ Z, ϕ = h+
√
P

k
is a reduced quadratic

irrational with a symmetrical continued fraction expansion. So, ϕ = βϕ. Then, by

Galois’ Theorem ϕ · ϕ′ = ϕ′ · βϕ = −1 ⇔ P = h2 + k2 ⇔ P ≡ 1 mod 4, a clear

contradiction. This proves (b). �

Lemma 3.9 All complete quotients that appear in the continued fraction for
√
P are
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reduced quadratic irrationals.

Proof : Let α be a complete quotient in the continued fraction for
√
P . The continued

fraction algorithm may be used to show that α is a quadratic irrational. We show

that α us reduced. Clearly, α > 1. By the Observation 1.14 we know that there is a

complete quotient, γ with γ > 1 such that α · γ′ = −1. Taking conjugates we obtain

α′ · γ = −1. So, |α′| · γ = 1 ⇒ |α′| = 1
γ
. That is, 0 < |α′| < 1. So, −1 < α′ < 0.

Thus, α is reduced. �

Theorem 3.10 establishes the general case.

Theorem 3.10 Let P be an odd prime with P ≡ 1 mod 4 and P = a2 + b2 be

the unique sums of squares representation of P. Then, a+
√
P

b
or b+

√
P

a
is a complete

quotient in the continued fraction expansion of
√
P .

Proof : Since P ≡ 1 mod 4, the Middle Term Theorem establishes that the continued

fraction for
√
P has no middle term. Thus, as in the proof of Theorem 3.2, there is

a complete quotient in the continued fraction for
√
P , say α that has a symmetrical

continued fraction expansion. By Lemma 3.9, α is a reduced quadratic irrational

associated with
√
P . But, by Theorem 3.8, the only reduced quadratic irrationals

associated with
√
P that have symmetrical continued fraction expansions are a+

√
P

b
,

b+
√
P

a
. Thus, α = a+

√
P

b
or α = b+

√
P

a
. �
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3.2 Convergents as Solutions

In 1.2.3 we found that all solutions to X2 − PY 2 = 1 are among the convergents in

the continued fraction expansion of
√
P . Indeed, as Theorem 1.19 asserts, if (x0, y0)

is a solution to X2 − PY 2 = 1 then x0

y0
is a convergent in the continued fraction

expansion of
√
P . But not all convergents in the continued fraction expansion of

√
P

solve Pell’s equation. In fact, many do not. However, all convergents for
√
P solve

some Pell-Like equation. The work of this section can be considered a generalization

of Theorems 1.20 through 1.22.

Recall the two problems associated with finding solutions to Pell-Like equations:

the decision problem and the search problem. We will now formulate similar problems

for convergent solutions.

Let P be prime. The convergent solutions decision problem for P and integer k is

the question: Does there exist an efficient means to decide if there exists a convergent,

Cm = pm

qm
in the continued fraction expansion of

√
P such that p2

m − Pq2
m = k? The

convergent solutions search problem for P is the following: Can we find all integers

k such that there exist a convergent, Cm = pm

qm
in the continued fraction expansion of

√
P such that p2

m − Pq2
m = k in a reasonable amount of time?

We will now give a systematic method for finding all Pell-Like equations solved

by convergents in the continued fraction expansion of
√
P .

Our first theorem narrows our view of the possible Pell-Like equations solved by

convergents.
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Theorem 3.11 If p
q

is a convergent in the continued fraction expansion of
√
P , then

|p2 − P · q2| < 1 + 2
√
P .

We now introduce some notation. Let Cn = pn

qn
. If p2

n − Pq2
n = N then we

write Cn → N and say ”Cn takes on N”. Rephrasing Theorem 3.3 in terms of this

new notation , we have Cm → (−1)m−1hm+1 for all convergents Cm in the continued

fraction expansion of
√
P .

Now, suppose Cn → N , where Cn is a convergent in the continued fraction ex-

pansion of
√
P . If P ≡ 3 mod 4, we know, by Theorem 2.7, that X2 − PY 2 = −N is

not solvable and thus no convergents take on −N . If P ≡ 1 mod 4, then we know,

by Theorem 2.23, that X2 − PY 2 = −N is solvable. However, we do not yet know,

in general, that Cm → −N for some integer m. But if we add the assumption that

| − N | <
√
P then, by Theorem 1.23, the only solutions to X2 − PY 2 = −N are

among the convergents in the continued fraction expansion of
√
P . So, there is an

integer m such that Cm → −N .

We can tell a lot about what values are taken on by convergents by considering

their subscripts as the next theorem illustrates.

Theorem 3.12 Let Ck = pk

qk
.

(a) k is even ⇔ p2
k − P · q2

k < 0.

(b) k is odd ⇔ p2
k − P · q2

k > 0.

Proof : We have C0 < C2 < C4 < ... <
√
P < ... < C5 < C3 < C1. Thus, k even
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⇔ Ck = pk

qk
<
√
P ⇔ pk <

√
P · qk ⇔ p2

k < P · q2
k ⇔ p2

k − P · q2
k < 0. This proves (a)

and the contrapositive proves (b). �

Now consider
√

13 = [3, 1, 1, 1, 1, 6] and recall that a reduced quadratic irrational

associated with
√

13 is an expression of the form k+
√

13
h

, where k, h ∈ Z and 0 < h.

There are five reduced quadratic irrationals (complete quotients) that show up in

the continued fraction expansion of
√

13, namely u1 = [1, 1, 1, 1, 6] = 3+
√

13
4

, u2 =

[1, 1, 1, 6, 1] = 1+
√

13
3

, u3 = [1, 1, 6, 1, 1] = 2+
√

13
3

, u4 = [1, 6, 1, 1, 1] = 1+
√

13
4

, and

u5 = [6, 1, 1, 1, 1] = 3+
√

13
1

. Recall that we denote by hi the denominator of ui.

After a considerable amount of computations we arrive at C0 → −4 = −h1,

C1 → 3 = h2, C2 → −3 = −h3, C3 → 4 = h4, C4 → −1 = −h5, C5 → 4 = h6 = h1,

..., C9 → 1 = h10 = h5.

Before establishing the general case we exercise a word of caution. We must

have a specific order on the set {hi : i ∈ N}. To do so we first consider the set of

complete quotients {ui : i ∈ N} and order these in the natural way. That is, u1

is the first complete quotient in the continued fraction expansion of
√
P , u2 is the

second complete quotient in the continued fraction expansion of
√
P ,...,ur is the rth

complete quotient in the continued fraction expansion of
√
P , where r is the length

of the period. Then, hi < hj ⇔ ui < uj ⇔ i < j is the correct way to order the

sequence {hi}. Moreover, since there are only finitely many ui there are finitely many

hi. So, for i, j ∈ Z+, i ≡ j mod r ⇒ hi = hj. From this point onward, when we refer

to the sequence {hi} we assume that it is ordered in the above mentioned way.
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Theorem 3.13 Let P be an odd prime, k ∈ N, and r be the length of the period in

the continued fraction expansion of
√
P .

(a) If P ≡ 1 mod 4 then Ck → N ⇔ Ck+r → −N .

(b) If P ≡ 3 mod 4 then Ck → N ⇔ Ck+r → N .

Proof : Clearly, k + 1 ≡ k + r + 1 mod r. So, hk+1 = hk+r+1. Also, hi > 0 for all i.

Suppose P ≡ 1 mod 4. Then, by the Middle Term Theorem, r is odd. Thus, by

Theorem 3.3 we have N = (−1)k−1hk+1 > 0 ⇔ k − 1 is even ⇔ k + r − 1 is odd

⇔ (−1)k+r−1hk = (−1)k+r−1hk+r−1 = −N < 0. This proves (a).

Now suppose P ≡ 3 mod 4. Then, by the Middle Term Theorem, r is even. Thus,

we have N = (−1)k−1hk+1 > 0⇔ k−1 is even⇔ k+r−1 is even⇔ (−1)k+r−1hk+1 =

(−1)k+r−1hk+r+1 > 0. This proves (b). �

Theorem 3.14 Let P be an odd prime, k ∈ N, and r the length of the period in the

continued fraction expansion of
√
P .

(a) If P ≡ 1 mod 4 and Cm → N , then Ci → N for some 0 ≤ i ≤ 2r − 1.

(b) If P ≡ 3 mod 4 and Cm → N , then Ci → N for some 0 ≤ i ≤ r − 1.

Proof : Let m ∈ N. By the Division Algorithm, we have m = r ·Q+ l with 0 ≤ l < r

for some unique Q, l ∈ Z. Thus, l < r ≤ l + r < 2r and l ≡ r + l ≡ 2r + l mod r. So,

hm = hl = hl+r. So, hm+1 = hl+1 = hl+r+1. By Theorem 3.3, Cm → (−1)m−1hm+1.

Suppose P ≡ 1 mod 4 and 2r ≤ m. Then r is odd. Thus, (−1)m−1hm+1 6=

(−1)l−1hl+1 ⇔ (−1)m−1 6= (−1)l−1 ⇔ (−1)m−1 = (−1)l+r−1 ⇔ (−1)m−1hm+1 =

(−1)l+r−1hl+r+1, since (−1)m−1 6= (−1)l−1 ⇒ m− 1 even and l− 1 odd or vice versa.
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This proves (a).

Suppose that P ≡ 3 mod 4 and r ≤ m. Then r is even. So, (−1)m−1 = (−1)m+r−1.

We have hm = hl. So, (−1)m−1hl = (−1)m+r−1hl+r. This proves (b). �

We now have an efficeint means for finding all solutions taken on by convergents

in the continued fraction expansion of
√
P . This algorithm is described in the next

subsection.

3.3 Applications to a General Criterion for Solvability of

Pell-Like Equations

Using Theorems 3.13 and 3.14, we now have a means for finding all solutions taken

on by convergents in the continued fraction expansion of
√
P .

Let CS be the set of all solutions taken on by convergents of
√
P . Recall that

by Theorem 1.5, we may compute the numerator, pk, and denominator, qk, of any

convergent according to the following recursive formulas:

(i) p0 = a0, p1 = a1a0 + 1, and pk = akpk−1 + pk−2

(ii) q0 = 1, q1 = a1, and qk = akqk−1 + qk−2.

We now describe an algorithm for finding all solutions taken on by convergents.

We will refer to it as the Convergent Solutions algorithm:

1. Compute si = p2
i − P · q2

i for each 0 ≤ i ≤ r − 1.

2. If P ≡ 1 mod 4, then CS = {±si : 0 ≤ i ≤ r − 1}.

3. If P ≡ 3 mod 4, then CS = {si : 0 ≤ i ≤ r − 1}.
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That the Convergent Solutions Algorithm correctly outputs all solutions taken on

by convergents can easily be proved using Theorems 3.13 and 3.14. Indeed, if P ≡ 3

mod 4, then by Theorem 3.14.b, CS = {si : 0 ≤ i ≤ r − 1}. If P ≡ 1 mod 4 and

for some k ∈ N, Ck → N , then by Theorem 3.14.a, Ci → N for 0 ≤ i ≤ 2r − 1. If

0 ≤ i ≤ r−1, then we are done. If r ≤ i ≤ 2r−1 then we may apply Theorem 3.13.a

to obtain that Ci−r → −N . This proves the correctness of the Convergent Solutions

algorithm.

The efficiency of the Convergent Solutions algorithm revolves around the time

that it takes to compute C0, C1, C2,...,Cr−1, which is, roughly, the same as the length

of the period, r in the continued fraction expansion of
√
P . Recall from 1.2.3 that,

for some constant A, that A·log(P ) < r < 0.72
√
P ·log(P ) and it is anticipated that

A ·
√
P < r < 0.72

√
P ·log(P ). Under these considerations, the Convergent Solutions

algorithm may take a considerable amount of time to produce all convergent solutions.

The Convergent Solutions Algorithm can be used to determine the unsolvability

of some Pell-Like equations. Recall that, by Theorem 1.23, If |k| <
√
P , then all

solutions to X2 − PY 2 = k are among the convergents in the continued fraction

expansion of
√
P . Thus, k ∈ {x ∈ Z : |x| <

√
P} − CS ⇒ X2 − PY 2 = k is not

solvable.

For example consider P = 41. Using the Convergent Solutions Algorithm we

arrive at CS = {5,−5,−1, 1}. Since [
√

41] = 6, we have {x ∈ Z : |x| <
√
P} −CS =

{±2,±3,±4,±6}. That is, X2−PY 2 = k is not solvable when k ∈ {±2,±3,±4,±6}.
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We now turn to the decision problem for convergent solutions of Pell-Like equa-

tions. When the period, r of the continued fraction expansion of
√
P is 1 or 2, we

can give general formulas for all solutions taken on by convergents.

Theorem 3.15 Let P be an odd prime and r = 1 be the length of the period in the

continued fraction expansion of
√
P .

Then, Cn → 1 when n is odd and Cn → −1 when n is even.

Proof : Since r = 1, we have, by Theorem 1.20, p2
k−1 − Pq2

k−1 = (−1)k for each

convergent Ck in the continued fraction expansion of
√
P . Since r = 1, the continued

fraction for
√
P has no middle term. So, P ≡ 1 mod 4. Thus, all convergent solutions

are given within the first two iterations of the period. So, when n is even p2
n−Pq2

n =

p2
0 − Pq2

0 = (−1)1 = −1. When n is odd we have, p2
n − Pq2

n = p2
1 − Pq2

1 = (−1)2 = 1.

�

In the proof of Theorem 3.16, we will use a fact that is worth recording on its

own. That is, for any prime P, C0 → [
√
P ]2 − P . Indeed, for p0 = a0 = [

√
P ] and

q0 = 1. Thus, p2
0 − Pq2

0 = [
√
P ]2 − P .

Theorem 3.16 Let P be an odd prime and r = 2 be the length of the period in the

continued fraction expansion of
√
P .

Then, Cn → 1 when n is odd and Cn → [
√
P ]2 − P when n is even.

Proof : Since r = 2, we have, by Theorem 1.20, p2
2k−1 − Pq2

2k−1 = (−1)2k = 1 for

each convergent Ck in the continued fraction expansion of
√
P . Thus, when n is odd,

Cn → 1.
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Since r = 2, there is no middle term in the continued fraction expansion of
√
P .

Thus, by the Middle Term Theorem, P ≡ 3 mod 4. So, by Theorem 3.14, for any

m ∈ N, Cm → N ⇒ C0 → N or C1 → N . So, N = 1, when m is odd and

N = [
√
P ]2 − P when m is even. �

It can be shown that for odd primes P,Q with P = n2 + 1, Q = m2 + 2,
√
P =

[n, 2n] and
√
Q = [n, n, 2n]. Thus, by Theorems 3.15 and 3.16, we have CS√P =

{1,−1} and CS√Q = {1, [
√
P ]2 − P}.

Why stop here? Indeed, we could prove analogous theorems for r ≥ 3. The

problem is that, using the methods of Theorems 3.15 and 3.16, we gain no more

effeciency than that of the convergent solutions algorithm. For example, if r = 3 then

the most general form at our disposal is to state that C1 → (a0a1 +1)2−Pa2
1. Since a1

is specific to
√
P , we gain no more effeciency than purely computing (a0a1 +1)2−Pa2

1.

Using Theorems 3.15, 3.16, we can answer the decision problem for many Pell-

Like equations. As an example, consider P = 5477. We have
√

5477 = [74, 148].

Thus, by Theorem 3.15 CS√5477 = {−1, 1}. Since [
√

5477] = 74, we have k ∈

[−74, 74]− {−1, 1} ⊆ Z⇒ X2 − PY 2 = k is not solvable.

In [3] Feit proved the following.

Theorem 3.17 Let P be prime such that P = a2 + (2b)2, with a, b ∈ Z. Then,

(a) X2 − PY 2 = a is always solvable.

(b) X2 − PY 2 = 4b is always solvable.
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This powerful result allows us to easily prove the last theorem of this section.

Theorem 3.18 Let P be prime such that P = a2 + (2b)2, with a, b ∈ Z. Then,

Ci → a for some 0 ≤ i ≤ 2r − 1, where r is the length of the period in the continued

fraction expansion of
√
P .

Proof : By Theorem 3.16 we know that X2 − PY 2 = a is solvable. Since a2 <

a2 + (2b)2 = P , we have a <
√
P . Thus, by Lagrange’s Theorem, the only solutions

to X2 − PY 2 = a come from the convergents in the continued fraction expansion of

√
P . So, Cm → a for some m ∈ N. Since P may be written as a sum of squares, we

know, by Fermat’s Great Theorem, that P ≡ 1 mod 4. So, by Theorem 3.13, Ci → a

for some 0 ≤ i ≤ 2r − 1. �

Using Theorems 3.3 and 3.10 we can prove a slightly weaker version of Theorem

3.17.a. That is, either X2−PY 2 = a is solvable or X2−PY 2 = 2b is solvable, where

P is a prime such that P = a2 + (2b)2, with a, b ∈ Z. Indeed, for by Theorem 3.10

either a+
√
P

2b
or 2b+

√
P

a
is a complete quotient in the continued fraction expansion for

√
P . Thus, by Theorem 3.3 we have that either X2 − PY 2 = a or X2 − PY 2 = 2b is

solvable.

3.4 Summary

The Middle Term Theorem has far reaching applications. As a characterization of

congruency modulo 4 the Middle Term Theorem, along with Theorem 3.3, has allowed

us to easily discuss the solvability and unsolvability of many Pell-Like equations.
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In 1.2.3 and 3.3 we remarked that computing the length of the period, r, in

the continued fraction expansion of
√
P for a prime P may not be able to be done

efficiently. It is the author’s opinion that all algorithms that compute convergent

solutions will rely on computing the length of r. Thus, the author conjectures that, for

many Pell-Like equations, the convergent solutions search problem will be answered

in the negative, provided that the suggested bound A ·
√
P < r, where A is a constant,

is confirmed.

These considerations illustrate the importance of Theorems 3.15, 3.16, and 3.17

and continued research in this direction. Using the methods of Theorems 3.15 and

3.16, we can, for sufficiently small r, compute all elements of CS√P , where P is

prime. This solves both the convergent solutions decision and search problems for

many Pell-Like equations.

Moreover, the author believes that the results of Theorem 3.17 are only the be-

ginning. Results of this type are immediate solutions to specific convergent solutions

decision problems. Further research in this direction will surely need to incorporate

Brahmagumpta’s Identity, Lagrange’s Theorem, and the methods of this chapter. As

a tool for gathering data to this end, Theorem 3.14 is indispensable.
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Chapter 4

APPLICATIONS TO CRYPTOGRAPHY

4.1 Introduction

We use the common practice that the sender of a secret message is given the name

Bob and the receiver is Alice. There are many mathematical methods for ensuring

that no third party, say Eve (for eavesdropper), can view the message when it is

passed from Bob to Alice. The goal of this introduction is to discuss the general form

of one type of these methods known as public key cryptography.

Let m′ denote a word from the alphabet A = {a,A, b, B, ..., z, Z, 0, 1, 2, ..., 9, ε},

where ε denotes the empty character (or space). There are many standard ways that

allow one to convert m′ into a unique natural number, say m, and convert m back to

its original message m′. We assume that we have chosen one of these methods and

that we will use it for every conversion.

Let M denote the set of all natural numbers that represent any word from A. So,

m ∈ M . We refer to M as the message space and any element of M as a plaintext

message.

Let C = N. We refer to C as the ciphertext space and any element of C as a



66

ciphertext. Any bijection from M to C or from C to M is called a key. Let K denote

the set of all keys.

Using the above terminology we may view encryption as a key from M to C and

decryption as a key from C to M . Thus, for e ∈ K and d = e−1, the encryption of

the message m is e(m) and the decryption is d(e(m)) = e−1(e(m)) = m.

In public key cryptosystems, the receiving party, Alice, creates a public and private

key, say e, d, respectively, with the property that d = e−1. Alice makes e accessible

to anyone. To encrypt m, Bob obtains e and computes e(m) = c. Bob then sends c

to Alice. Once Alice has received c, she computes d(c) = m.

In a secure public key cryptosystem, it is computationally infeasible to compute

d(m) given e [7].

4.2 LGroups

We will now define a group based on solutions to Pell-like equations that has many

applications to Cryptography.

Let P , q be odd primes and G = {(x, y) ∈ Z2
q : x2 − Py2 = k}, where (k/P ) =

(k/q) = 1. We can define a binary operation on G as follows. Since (k/q) = 1 we

know there is a ∈ Z such that a2 ≡ k mod q. Thus, for (x, y), (z, w) ∈ G, we may

define (x, y) · (z, w) = (xz+Pyw
a

, xw+yz
a

).

Theorem 4.1 Let G be defined as above and a ∈ Z such that a2 ≡ k mod q. Then,

(G, ·) is an Abelian group.
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Proof : We first show that G is closed under the operation ·. To make things sim-

pler we work in integers mod q which is a field and the equation at hand is an

element of Zq[x, y]. Let (x,y),(z,w) be in G. Consider (x, y) · (z, w) = (xz+pyw
a

, xw+yz
a

).

We claim that (xz+pyw
a

)2 − p · (xw+yz
a

)2 = k. Note first that (xz + pyw)2 = x2z2 +

2pxyzw+p2y2w2 and (xw+yz)2 = x2w2 +2xyzw+y2z2. So, (xz+pyw
a

)2−p ·(xw+yz
a

)2 =

x2z2+2pxyzw+p2y2w2−px2w2−2pxyzw−py2z2
a2 = x2z2+p2y2w2−px2w2−py2z2

a2 = z2(x2−py2)−pw2(x2−py2)
a2 =

(x2−py2)(z2−pw2)
a2 = kk

a2 = k2

a2 = k2

k
= k.

We now show that (a, 0) is the identity for (G, ·). Let (x, y) ∈ G. Then, (x, y) ·

(a, 0) = (xa
a

mod q,ya
a

mod q) = (x mod q, y mod q) = (x, y).

We now show that G contains inverses. Let (x, y) ∈ G and (z, w) = (x, q − x).

Then (x, y) ∗ (x, q − y) = (x
2−py2+pqy

a
mod q, xq+xy−xy

a
mod q) = (x

2−py2
a

mod q, xq
a

mod q) = (a
2

a
mod q, 0 mod q) = (a, 0). Thus, (x, y)−1 = (x, q − x).

In [4] it was proven that the operation · is associative.

G is abelian, since (x, y) ∗ (z, w) = (xz+pyw
a

mod q,xw+yz
a

mod q) = ( zx+pwy
a

mod

q, zy+wx
a

mod q) = (z, w) ∗ (x, y). �

D. Hinkel proved, in [4], that for arbitrary r,D ∈ Zq, the group LZq = {(x, y) ∈

Z2
q : x2−Dy2 = r2} is cyclic and has order q− (D/q). This result yields the following

corollaries.

Corollary 4.2 |G| = q − (P/q).

Corollary 4.3 LGroups are cyclic.



68

In the next three sections we discuss some cryptographic applications of LGroups.

Please see Appendix A.2 for MAPLE procedures that apply the operation ·, find

inverses and compute the order of LGroups.

4.3 Feige-Fiat-Shamir Authentication

When transferring information over the Internet or airwaves it is imperative that enti-

ties are able to authenticate their identity to one another. In practice, authentication

between machines happens far more often than between humans. For example, when

one uses their cell phone it must authenticate its identity with the call center for

billing purposes. One method for authentication is the Feige-Fiat-Shamir authenti-

cation schema.

Feige-Fiat-Shamir authentication is an example of what is known as a Zero-

Knowledge Proof. The essential idea behind a zero-knowledge proof of identity is

that neither parties involved in the authentication process need to disclose any infor-

mation that could be used by a malicious party.

We now describe the Feige-Fiat-Shamir authentication schema. Alice proves her

identity to Bob in t executions of the following algorithm. We describe the kth

iteration of the t step process.

1. Alice chooses g1, g2, ..., gn ∈ G and computes vi = (g2
i )
−1, for each 1 ≤ i ≤ n.

Her private key is the n-tuple (g1, g2, ..., gn). Her public key is (v1, v2, ..., vn, G).

2. Alice chooses r ∈ G and computes X = r2 and sends X (publicly) to Bob.
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3. Bob sends (e1, e2, ..., en) where ej ∈ {0, 1} to Alice.

4. Alice then computes Y = r ·
∏n

i=1(gei
i ) and sends Y to Bob.

5. Bob then computes Z = Y 2 ·
∏n

i=1(vei
i ).

If X = Z, then Bob accepts Alice’s proof of identity for the kth execution. They

repeat this process t times.

The best possible attack on Feige-Fiat-Shamir Authentication schema has a 1
2kt

probability of successfully forging someones identity [7].

For MAPLE implementations of the Feige-Fiat-Shamir authentication schema

please see appendix A.3.

4.4 The Diffie-Hellman Key Exchange

Symmetric Key Cryptography relies on the assumption that both communicating

parties share a private key. Thus, the problem of establishing a shared private key is

central to the issue of security in a symmetric key cryptographic system.

The Diffie-Hellman key exchange protocol allows two parties to securely create a

shared key for symmetric key cryptographic purposes. Its security is based on the

computational infeasibilty of the discrete log problem.

Remark 4.4 Let G be an LGroup and g ∈ G. Choose x ∈ N and compute b = x · g.

Make g and b public. The discrete log problem is the problem of finding x. �

We will now implement the Diffie-Hellman key exchange protocol in LGroups.



70

Suppose that Alice and Bob want to communicate securely using a symettric key

cryptosystem. To implement the Diffie-Hellman Key exchange they do the following:

1. They agree on a public LGroup, G and g ∈ G.

2. Alice and Bob choose random natural numbers x and y (respectively) and

compute u = x · g, v = y · g (respectively).

3. Alice publicly sends u to Bob and Bob publicly sends v to Alice.

4. Alice then computes Ka = x · v and Bob computes Kb = y · u.

Theorem 4.5 The Diffie-Hellman Key exchange protocol based on LGroups works.

Proof : Ka = x · v =
∏x

i=1 v =
∏x

i=1(y · g) =
∏x

i=1(
∏y

j=1 g) =
∏y

j=1(
∏x

i=1 g) =∏y
j=1(x · g) =

∏y
j=1 u = y · u = Kb, where the fifth equality, upon switching the order

of the products, follows from the associativity of · as proved in Theorem 4.3. �

With regards to the above theorem, we let K = Ka = Kb be the shared private

key that Alice and Bob may now use to communicate secretly. Notice that G, g, u,

and v are all public. However, K is kept secret by the computational infeasibility of

solving the discrete log problem in the amount of time necessary for Alice and Bob

to exchange a message.

Please see Appendix A.2 for MAPLE implementations of relevant procedures.

4.5 LGroup El Gamal

We now implement an El Gamal style cryptosystem using LGroups. The security

of an El Gamal system relies on the computational infeasibility of the discrete log



71

problem.

Suppose that Alice wishes to receive a secret message from Bob. She must first

create a public key so that Bob can encrypt a message for her:

1. She chooses an LGroup, say G, g ∈, and a random x ∈ N.

2. She then computes b = gx.

3. Her public key is (b, g, G).

4. She also needs to create a private key to be able to decrypt the ciphertext after

recieving it. Let x be Alice’s private key.

Let m be the message Bob wants to send to Alice. We assume that, through a

prescribed standard protocol, m has been converted, by Bob, into M ∈ G. We call

this embedding m in the group, G. For a MAPLE implementation of a standard

embedding procedure see Appendix A.4.

Bob uses Alice’s public key to encrypt M as follows:

1. Bob chooses a random r ∈ N.

2. Bob computes, in G, y = gr, s = br, and then e = s ·m.

3. Bob’s encrypted message is the pair (e, y).

4. Bob sends (e, y) to Alice.

To decrypt (e, y), Alice does the following:

1. She computes d = yx and then C = d−1 · e.

2. She then unembeds C from G to get M .

Theorem 4.6 The El Gamal decryption algorithm based on LGroups works.
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Proof : Recall from above that b = gx. So, b ·g−x = 1, where 1 denotes the identity in

G. Thus, using the formulas derived above, we have d−1 = (yx)−1 = y−x = (gr)−x =

(g−x)r and e = s ·M = br ·M . So, C = d−1 · e = (g−x)r · br ·M = (b · g−x)r ·M =

(1)r ·M = 1 ·M = M . �

For MAPLE implementations of an LGroup El Gamal Cryptosystem, see Ap-

pendix A.4.

4.6 LGroup RSA

The Rivest-Shamir-Adleman (RSA) cryptosystem can be implemented on any group

G provided that the order of G can be computed and there is a method for embedding

messages into G. We now describe the RSA key generation algorithm for an arbitrary

group.

Suppose that Alice wishes to receive a secret message from Bob. To create a public

and private RSA key Alice does the following:

1. She chooses a group, say G.

2. She computes the order of G which we will denote |G|.

3. Alice then chooses a random r ∈ N such that gcd(|G|, r) = 1 and computes

n = r−1 mod |G|. Note that the existence of such an n is guaranteed by the the fact

that gcd(|G|, r) = 1.

4. Alice’s public key is (r,G). Alice’s private key is n.

The security of the RSA cryptosystem relies on the computational infeasibility of
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the integer factorization problem. Since there is no factorization problem inherant in

their definition, RSA cannot be implemented on LGroups.

A natural fix for LGroups is to change the prime q to a composite integer R. Since

the Legendre function can be generalized to the Jacobi function, we can still require

(k/P ) = (k/R) = 1 and the group operation still makes sense. However, this leads

to two open problems whose resolution is necessary for RSA to be implemented on

these modified LGroups.

Remark 4.7 Open Problem 1: embedding messages into a modified LGroup. Let m

be the padded ASCII message and G = {(x, y) ∈ Z2 : x2 − Py2 = k mod R}, where

R = r ·s for primes r, s. To implement RSA, we need to find a point in G to represent

m.

If we attempt to use a Koblitz style embedding procedure, this reduces to the

problem of solving x2−k
P

= y2 mod R. But, we need the factorization of R to do this,

which is private.

If we attempt to use a Lucas Group style embedding (see 4.6.2 below), then we

must be able to compute P = m2 − a2. But, we are not guaranteed that m2 − a2

is prime. The problem with this approach is that requiring P to be prime is too

restrictive for a Lucas Style Embedding.

There is no known embedding procedure for RSA on modified LGroups.

Remark 4.8 Open Problem 2: computing the order of a modified LGroup. We do

not yet know the order, in general, for modified LGroups. We conjecture that for the
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modified LGroup G = {(x, y) ∈ Z2 : x2−Py2 = k mod R}, where R = s · t for primes

s, t, |G| = (s−Legendre(P, s)) · (t−Legendre(P, t)).

4.7 Wiener’s Attack on RSA

Since a major portion of our work above uses the theory of continued fractions, we

include a discussion of an attack on the Rivest-Shamir-Adleman (RSA) cryptosystem

that uses this theory. For completeness we state the RSA Algorithm for ZR.

Suppose that Bob wishes to send a secret message to Alice. Alice creates RSA

public and private keys as follows:

1. Choose two primes p and q and compute R = p · q.

2. Compute φ = (p− 1)(q − 1).

3. Choose e ∈ Z such that 1 < e < φ and gcd(e, φ) = 1.

4. Choose d ∈ Z such that 1 < d < φ and ed ≡ 1 mod φ.

5. Alice’s private key is (e, R) and her private key is (d,R).

To encrypt a message for Alice, Bob does the following:

1. Get Alice’s public key (e, R).

2. Represent the message as a number M in the interval [1, R− 1]. M is referred

to as the plaintext.

3. Compute C = M e mod R. This is the ciphertext.

4. Send C to Alice.

To decrypt M Alice does the following:
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Compute M = Cd mod R.

Remark 4.9 The RSA problem. The problem of recovering the plaintext M from

the ciphertext C given the public key (e, R) is known as the RSA problem.

Remark 4.10 The integer factorization problem. For n ∈ Z, the integer factoriza-

tion problem is: find the prime factorization of n.

There is no efficient algorithm that can, in general, solve the RSA problem [7].

However, if one can find the prime factorization of R, then one can efficiently solve

the RSA problem. Indeed, for knowing that R = p · q allows one to compute φ. This,

in turn, allows one to compute d = e−1 mod φ, since (e, R) is public. Thus, the

security of the RSA cryptosystem revolves around the intractability of the integer

factorization problem.

4.7.1 Wiener’s Attack on Traditional RSA

In 1989 Michael Wiener developed an attack on the RSA cyptosystem which employs

the theory of continued fractions. His attack allows one to find the secret RSA

exponent, d, provided that d is sufficiently small.

Let p
q
, p
′

q′
, δ ∈ Q, with δ > 0, and suppose that p′

q′
= p

q
· (1 − δ). That is, p′

q′
is a

close (for δ small) underestimate of p
q
.

In [11] Wiener showed that, assuming δ < 1
(3/2)pq

, we may find p
q
. We describe the

ith step of the algorithm:

1. Compute the ith quotient, a′i, of the continued fraction expansion of p′

q′
.
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2. Using Theorem 1.6, construct r
s

= [a′0, a
′
1, a
′
2, ..., a

′
i−1, a

′
i + 1] if i is even and

r
s

= [a′0, a
′
1, a
′
2, ..., a

′
i−1, a

′
i] if i is odd.

3. Check if r
s

= p
q
.

It may seem peculiar, in step 2, that we add 1 to the ith quotient. By Theorem

1.9, we have C ′i ≤
p′

q′
, when i is even and C ′i ≥

p′

q′
, when i is odd, where C ′i denotes

the ith convergent in the continued fraction expansion of p′

q′
. If i is odd, then, since

r
s

= C ′i, we have p′

q′
< r

s
≤ p

q
. If i is even then adding 1 to the ith quotient ensures

that we have C ′i <
p′

q′
< r

s
≤ p

q
.

Let (R, e) be an RSA public key and d be the corresponding RSA private key.

We have e · d ≡ 1 mod lcm(p − 1, q − 1). So, there is K ∈ Z such that ed =

K · lcm(p − 1, q − 1) + 1. We know, from elementary number theory, that for any

a, b ∈ Z, gcd(a, b) · lcm(a, b) = a · b. Thus, if we let H = gcd(p − 1, q − 1), ed =

K · lcm(p − 1, q − 1) + 1 becomes ed = K
H

(p − 1)(q − 1) + 1. Since it is possible

that gcd(K,H) 6= 1, we let k = K
gcd(K,H)

and h = H
gcd(K,H)

. So, k
h

= K
H

, which yields

ed = k
h
(p− 1)(q − 1) + 1 or equivalently, edh = k(p− 1)(q − 1) + h.

In [11] Wiener showed that, assuming kdh < R
(3/2)(p+q)

, e
pq

is a close enough esti-

mate of k
dh

to invoke steps one and two of the algorithm described above as the first of

a series of tests that allow one to find d. Thus, we make this assumption and proceed

to describe these tests, which we perform, until failure, for each successive guess of

k
dh

. If, during the ith stage, a test fails, then we know that our ith guess of k
dh

was

incorrect and we must move on to the (i+ 1)st series of these tests. We additionally
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assume, as Wiener did, that ed > R. Thus, R < ed = k
h
(p− 1)(q − 1) + 1⇒ k > h.

Wiener’s RSA Attack: Let e
pq

= [a′0, a
′
1, a
′
2, ..., a

′
i, ..., a

′
m−1, a

′
m] be the continued

fraction expansion of e
pq

.

1. Invoke steps one and two of Wiener’s Continued Fraction Algorithm to obtain

r
s

= [a′0, a
′
1, a
′
2, ..., a

′
i−1, a

′
i + 1] if i is even and r

s
= [a′0, a

′
1, a
′
2, ..., a

′
i−1, a

′
i] if i is odd.

2. By step 1, s is our guess (for this stage) of dh. Thus, we guess that edh = e · s.

3. Using edh = k(p−1)(q−1)+h, we guess (p−1) · (q−1) by computing [edh/k].

If this guess is 0, then we move on to the (i+ 1)st series of tests.

4. Using edh = k(p− 1)(q − 1) + h, we guess h by computing edh mod k.

5. Using our guess of (p − 1) · (q − 1) and the identity pq−(p−1)(q−1)+1
2

= p+q
2

, we

guess p+q
2

. If p+q
2

is not an integer, then we move on to the (i+ 1)st series of tests.

6. Using our guess of p+q
2

and the identity (p+q
2

)2 − pq = (p−q
2

)2, we compute a

guess of (p−q
2

)2. If (p−q
2

)2 is not an integer, then we move on to the (i+ 1)st series of

tests.

7. If (p−q
2

)2 is an integer, then we know that all quantities that we have calculated

in the ith stage are correct and we may conclude that d = dh
h

.

4.7.2 Wiener’s Attack on Lucas Group RSA

Let x ∈ Z+, D = x2 − 4, and R ∈ Z with R > 2 and gcd(2D,R) = 1. Define

L(D,R) = {(a, b) ∈ Z2
R : a2 −Db2 = 4 mod R}. Also, define a binary operation on

L(D,R) as follows: (u, v) · (w, z) = (R+1
2

(uz +Dvw), R+1
2

(uw + vz)).
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Theorem 4.11 (L(D,R), ·) as defined above is an abelian group.

We will refer to the group L(D,R) as a Lucas Group. Lucas Groups have many ap-

plications to cryptography, including RSA. We now describe how to construct public

and private Lucas Group RSA keys.

Suppose that Alice wishes to create Lucas Group RSA public and private keys.

To do so Alice does the following:

1. Choose odd primes p and q.

2. Compute R = p · q and Γ(R) = (p2 − 1)(q2 − 1).

3. Choose n < R such that gcd(n,Γ(R)) = 1.

4. Compute m = n−1 mod Γ(R).

5. Alice’s public key is (R, n) and Alice’s private key is m.

Let M be a message that Bob wants to send to Alice. To encrypt M Bob does

the following:

1. Obtain Alice’s public key (R, n).

2. Compute D = M2 − 4. Then, (M, 1) ∈ L(D,R).

3. Compute C = (M, 1)n in L(D,R).

4. The encrypted message is C.

Wiener’s attack on RSA can be adapted to Lucas Groups. Since Lucas Groups

are very similar to LGroups, our motivation is that if RSA is eventually implemented

on LGroups then one may easily adapt Wiener’s attack on RSA to LGroup RSA.
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We assume that Alice has created Lucas group RSA public and private keys, (R, n)

and m, respectively, where R = p ·q and both p and q are prime. Recall that m ·n ≡ 1

mod Γ(R). Thus, there is k ∈ Z such that Γ(R) · k + 1 = m · n.

Theorem 4.12 Let R, m, n, and k be defined as above. If q < p < 4q and m < R1/2

10

and k ≤min{m,n}, then k
m

is a convergent in the continued fraction expansion of n
R2 .

Proof : We first collect the following two facts:

(a) k
m
< 1.

(b) p2 + q2 < 5R.

To prove (a), note that if k
m
> 1, then k > m, contrary to assumption.

We now prove (b). Note that q < p ⇒ q2 < p · q = R and q < p ⇒ q · p < p2 ⇒

R < p2. So, q2 < R < p2 < 4R. So, p2 + q2 < 4R + q2 < 5R.

We show k
m
− n

R2 < 1
2m2 . Then, by an application of Theorem 1.18, the result

follows.

So, k
m
− n

R2 = kR2−nm
mR2 = kR2−kΓ(R)−1

mR2 = k(R2−Γ(R))−1
mR2 = k(R2−(p2−1)(q2−1))−1

mR2 =

k(R2−(R2−p2−q2+1))
mR2 = k(R2−R2+p2+q2−1)−1

mR2 = k(p2+q2−1)−1
mR2 < k(p2+q2)

mR2 < 5kR
mR2 = 5k

mR
< 5

R
<

1
2m2 , where the second, third, and fourth inequalities follow from (b), (a), and the

assumption m < R1/2

10
, respectively. �

Theorem 4.12 shows that, assuming q < p < 4q and m < R1/2

10
and k ≤min{m,n},

a modification of Wiener’s attack on RSA for Lucas Groups will not be in vain.

Indeed, since if k
m

is not a convergent in the continued fraction expansion of n
R2

then the algorithm described in paragraph three of 4.7.1 will never yield any possible
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candidates for k
m

.

Notice that the definition of D for Lucas groups may be generalized to D = x2− t

such that Jacobi(t, R) = 1, where Jacobi( , ) denotes Jacobi’s generalization of the

Legendre function. Moreover, the group operation still works. We refer to groups

formed with this slight variation as generalized Lucas Groups.

All odd primes may be expressed as a difference of squares [2]. Thus, all LGroups

are generalized Lucas groups. If, in the future, RSA is implemented on LGroups, then

our work in this subsection shows that Wiener’s attack on RSA may be implemented

on LGroups.

4.8 Summary

LGroups have far reaching applications to cryptography. As is illustrated above,

they may be used for authentication, El Gamal, and symmetric key cryptosystems.

However, LGroups cannot, at this time, be used for RSA. This is due to the use of

primes in the definition of LGroups.

The study of LGroups allows one to gain a deeper understanding of cryptographic

groups and their subtlties. When creating groups for cryptography one must be

careful to consider what types of cryptography a group will be used for. As in the

case of LGroups and RSA, the integer factorization problem cannot be implemented

in a way that allows messages to be embedded.

A resolution of open problem 1 would be astounding. It does not seem likely,
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given various attempts made by the author, that open problem 1 will ever be resolved.

However, solutions to problems once thought unsolvable is the essence of mathematics

and the author hopes to, one day, see a solution.

Open problem 2 seems much more attainable. Since LGroups are generalized

Lucas groups and the conjecture for open problem 2 holds for Lucas Groups, open

problem 2 does not seem far from a solution.

The work we have done here is only the beginning. As cryptographic technology

advances and new techniques are created LGroups may find their place in this exciting

field. In fact, new cryptosystems may be created using the problems introduced in

this thesis. Further research in this direction is encouraged.
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Appendix A

MAPLE PROCEDURES

A.1 Data Collection Procedures

Using the Computer Algebra System MAPLE over 800 pages of data was collected
in connection with this Thesis. Most, if not all, of the new results presented in this
work were discovered by analyzing this data. Throughout this appendix, we will give
the motivation behind each of the MAPLE procedures presented and state some of
the theorems came out of the data collected by particular procedures.

The next procedure takes an integer as input and outputs the square free part.
This procedure was used in other procedures that implemented Theorems 2.13 and
2.14. Its efficiency is no better than that of integer factorization.

GetSqrFreePart:=proc(K)

local X,i,n,SqrFreePart:

if(issqrfree(K)) then

RETURN(K):

else

X:=ifactors(K):

n:=nops(X[2]):

SqrFreePart:=1:

for i from 1 to n do

if(X[2][i][2] mod 2 =1) then

SqrFreePart:=SqrFreePart*X[2][i][1]:

fi:

od:

RETURN(SqrFreePart):

fi:

end:

This procedure is a variation of the one above. It returns the odd square free part
of an input integer.

GetOddSqrFreePart:=proc(k)

local sqrfreePart:

sqrfreePart:=GetSqrFreePart(k):

if(sqrfreePart mod 2 =0) then
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RETURN(sqrfreePart/2):

else

RETURN(sqrfreePart):

fi:

end:

This procedure finds and returns all squares mod n. This was used to develop the
Mod N Test.

GetSquaresModn:=proc(n)

local i, j, u, m, SquareList, notinlist, temp:

SquareList[1]:=0:

SquareList[2]:=1:

m:=2: # n is number of things in list

for i from 2 to n-1 do

u:=i^2 mod n:

notinlist:=true:

############## test to see if u is in the list ###########

for j from 1 to m do

if(u=SquareList[j]) then

notinlist:=false:

fi:

od:

##########################################################

if(notinlist) then

m:=m+1:

SquareList[m]:=u:

fi:

od:

temp:=convert(SquareList,list):

RETURN(temp):

end:

This procedure was created before there was a Convergent Solutions algorithm. It
does essentially the same thing, but with far less efficiency. This was used to develop
Chapter Three.

GetConverSolnList:=proc(P,Bound)

local i,j,n,m,x,y,temp,z,C,TempList,NotInList:

C:=cfrac(sqrt(P),Bound,’quotients’):

x:=nthnumer(C,0):

y:=nthdenom(C,0):

z:=x^2-P*y^2:

TempList[1]:=z:
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n:=1:

for i from 1 to Bound do

x:=nthnumer(C,i):

y:=nthdenom(C,i):

z:=x^2-P*y^2:

NotInList:=true:

############## test to see if z is in the list ###########

for j from 1 to n do

if(z=TempList[j]) then

NotInList:=false:

fi:

od:

##########################################################

if(NotInList) then

n:=n+1:

TempList[n]:=z:

fi:

od:

temp:=convert(TempList,list):

RETURN(temp):

end:

This procedure finds the fundamental solution to any Pell equation. I wrote it
at the very beginning of this project. I would definitely do it differently now that I
have a much better handle on continued fractions. Still, it works. This is the basis
for everything.

pellFS := proc (p, BD)

local k, u, x, y, z, C;

C := cfrac(sqrt(p), BD);

for k to BD do

x := nthnumer(C, k);

y := nthdenom(C, k);

z := x^2-p*y^2;

u := evalf(sqrt(p));

if u < x then

if z = 1 then

RETURN([x, y])

end if

end if

end do;

RETURN([-1, -1])

end proc
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This procedure is used in the next procedure.

getdelta := proc (p, BD)

local x, y, d, D, u;

x := pellFSX(p, BD);

y := pellFSY(p, BD);

u := evalf(sqrt(p));

d := evalf(x+y*u);

D := evalf(1/2+(1/2)*d*x/(d-1));

if 0 < x then

RETURN(D)

end if;

if x = -1 then

RETURN(-1)

end if

end proc

This procedure finds the fundamental solution to any Pell-Like equation, if it
exists. I wrote it at the very beginning of this project. I would definitely do it
differently now that I have a much better handle on continued fractions. Still, it
works. This is the basis for everything.

> PLFS := proc (p, k, BD)

local d, u, v, x, y, s, t, z, U;

d := getdelta(p, BD);

u := evalf(sqrt(p));

v := evalf(sqrt(k*d));

U := floor(v);

if d = -1 then

RETURN([-1, 1])

else for x to U do

y := sqrt((x^2-k)/p);

t := floor(y);

s := x^2-p*y^2;

if type(y, integer) then

if s = k then

RETURN([x, y])

end if

end if

end do;

RETURN([-1, -1])

end if;

RETURN([-1, -2])
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end proc;

The following four procedures use Brahmagumpta’s Lemma to produce as many
solutions to a particular Pell-Like equation as desired. I conjecture that the algorithms
employed here generate all solutions.

GenerateASoln:=proc(p,k,soln,Bound) # soln is a point

local PellFS,X,Y,i,temp:

PellFS:=pellFS(p,Bound):

if(PellFS[1]=-1) then

RETURN("Bound too small"):

else

X[1]:=soln[1]*PellFS[1]-p*soln[2]*PellFS[2]:

Y[1]:=soln[1]*PellFS[2]-soln[2]*PellFS[1]:

print([X[1],Y[1]]):

fi:

end:

GenerateASoln2:=proc(p,k,soln,Bound) # soln is a point

local PellFS,X,Y,i,temp:

PellFS:=pellFS(p,Bound):

if(PellFS[1]=-1) then

RETURN("Bound too small"):

else

X[1]:=soln[1]*PellFS[1]-p*soln[2]*PellFS[2]:

Y[1]:=soln[1]*PellFS[2]-soln[2]*PellFS[1]:

RETURN([X[1],Y[1]]):

fi:

end:

GenerateManySoln:=proc(p,k,soln,Bound) # soln is a point

local PellFS,X,Y,i,temp:

PellFS:=pellFS(p,Bound):

if(PellFS[1]=-1) then

RETURN("Bound too small"):

else

X[1]:=soln[1]*PellFS[1]+p*soln[2]*PellFS[2]:

Y[1]:=soln[1]*PellFS[2]+soln[2]*PellFS[1]:

print([X[1],Y[1]]):

for i from 2 to Bound do



88

X[i]:=X[i-1]*PellFS[1]+p*Y[i-1]*PellFS[2]:

Y[i]:=X[i-1]*PellFS[2]+Y[i-1]*PellFS[1]:

print([X[i],Y[i]]):

od:

fi:

end:

GenerateSoln:=proc(P,k,Soln,Bound)

local X:

print(Soln):

GenerateManySoln(P,k,Soln,Bound):

X:=GenerateASoln2(P,k,Soln,Bound):

print(X):

GenerateManySoln(P,k,X,Bound):

end:

This procedure tests to see if for a particular k we have |k| < 1 + 2
√
P .

SolnKNotInI:=proc(p,k,BD)

local x,y,z:

for x from 1 to BD do

for y from 1 to BD do

z:=x^(2)-p*y^(2):

if(z=k)then

print([x,y]):

fi:

od:

od:

end:

This procedure is employed in the Mod N Test.

NotSolvableModn:=proc(P,K,n)

local p, i, j, z, m, k, SqrList:

p:=P mod n:

k:=K mod n:

SqrList:=GetSquaresModn(n):

m:=nops(SqrList):

for i from 1 to m do

for j from 1 to m do

z:=(SqrList[i]-p*SqrList[j]) mod n:

if(z=k) then

RETURN(false):

fi:
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od:

od:

RETURN(true):

end:

This is the Mod N Test.

ModnTest:=proc(P,K,LowerBound,UpperBound)

local i:

for i from LowerBound to UpperBound do

if(NotSolvableModn(P,K,i)) then

printf("not solvable mod %d",i):

RETURN():

fi:

od:

printf("test not conclusive"):

end:

This procedure was used to produce my initial base of data; nothing pretty here,
but it got the job done.

ExhaustiveSearch:=proc(P,k,BD)

local x,y,z,u,v,soln,FS,temp:

print(P mod 4):

print(issqrfree(k)):

temp:=floor(evalf(1+2*sqrt(P))):

if((-temp)<k and k<temp) then

print("K in I"):

else

print("K not in I"):

fi:

if(legendre(k,P)=1) then

print("legendre(k,P)=1"):

fi:

if(legendre(k,P)=-1) then

print("legendre(k,P)=-1"):

fi:

if(legendre(k,P)=0) then

print("legendre(k,P)=0"):

fi:

soln:=0:

if(legendre(k,P)=1 or legendre(k,P)=0) then

temp:=Test5(P,k):
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if(temp=1) then

RETURN("not solvable by Theorem 5"):

fi:

temp:=Test6(P,k):

if(temp=1) then

RETURN("not solvable by Theorem 6"):

fi:

temp:=Test7(P,k):

if(temp=1) then

RETURN("not solvable by Theorem 7"):

fi:

temp:=Test8(P,k):

if(temp=1) then

RETURN("not solvable by Theorem 8"):

fi:

for x from 1 to BD do

for y from 1 to BD do

z:=x^2-P*y^2:

if(z=k)then

print([x,y]):

soln:=1:

fi:

od:

od:

if(soln=0) then

FS:=PLFS(P,k,BD):

if(FS[1]>0) then

print(FS):

else

if(FS[2]=1) then

print("Bound too small"):

fi:

if(FS[2]=-1) then

print("Legendre(k,p)=1 but the equation

is Not Solvable"):

fi:

fi:

fi:

else

print("not solvable"):

fi:

end:
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This next series of procedures implements the Theorems in 2.11.

Test5:=proc(P,k) # returns 1 if not solvable, -1 when test is

inconclusive or k =1

local sqrfreePart:

sqrfreePart:=GetSqrFreePart(k):

if(sqrfreePart mod 4 =3 and P mod 4 =3) then

RETURN(1):

else

RETURN(-1):

fi:

end:

Test6:=proc(P,k) # k must not be perfect square

returns 1 if not solvable,

-1 when test is inconclusive

local sqrfreePart, oddsqrfreePart, numberOfPrimes

InOddSqrFreePart,i,qq:

sqrfreePart:=GetSqrFreePart(k):

if(P mod 8 =5 and type(sqrfreePart/2,integer)

and legendre(2,P)=-1) then

RETURN(1):

fi:

oddsqrfreePart:=GetOddSqrFreePart(k):

numberOfPrimesInOddSqrFreePart:=nops(ifactors

(oddsqrfreePart)[2]):

for i from 1 to numberOfPrimesInOddSqrFreePart do

qq:=ifactors(oddsqrfreePart)[2][i][1]:

if(legendre(P,qq)=-1) then

RETURN(1):

fi:

od:

RETURN(-1):

end:

I used this next procedure to collect data on convergent solutions.

PLConverSoln:=proc(P,SolnBound)

local C,n,ConverSolnList,i,x,y,z,j:

ConverSolnList:=GetConverSolnList(P,SolnBound):
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n:=nops(ConverSolnList):

C:=cfrac(sqrt(P),SolnBound,’quotients’):

print(ConverSolnList):

for i from 1 to n do

printf("---------------- x^2-%dy^2=%d----------------",

P,ConverSolnList[i]):

print():

for j from 0 to SolnBound do

x:=nthnumer(C,j):

y:=nthdenom(C,j):

z:=x^2-P*y^2:

if(z=ConverSolnList[i]) then

print([x,y,j]):

fi:

od:

print():

print():

od:

end:

A.2 LGroup Procedures

The following MAPLE procedures implement operations on LGroup.

This procedure applys the LGroup operation.

LGroupApplyOp:=proc(g,h,G) # g, h elements in group G

local x, y:

x:=(g[1]*h[1]+G[1]*g[2]*h[2])/G[3] mod G[2]:

y:=(g[1]*h[2]+h[1]*g[2])/G[3] mod G[2]:

RETURN([x,y]):

end:

This procedure computes the inverse of an element of an LGroup.

ComputeInverse:=proc(pt,G)

local z:

z:=G[2]-pt[2]:

RETURN([pt[1],z]):

end:

This procedure finds 2g.
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LGroupDouble:=proc(pt,G)

RETURN(LGroupApplyOp(pt,pt,G)):

end:

This procedure computes xg, for any scalar x and any g ∈ G.

LGroupTimes:=proc(Point,scalar,Group)

local m, pt, x, j:

if ((Point = LGroupIdentity) or (scalar = 0)) then

RETURN(LGroupIdentity):

else

m :=scalar:

pt:=Point:

x :=LGroupIdentity:

for j from 1 to scalar do

if (m mod 2 = 0) then

m := m/2:

else

m:= (m-1)/2:

x:= LGroupApplyOp(x,pt,Group):

fi:

if (m = 0) then

RETURN(x):

fi:

pt:= LGroupDouble(pt,Group):

od:

fi:

end:

This procedure searches, within bounds, for an element of G. Notice the logic
used: we first use the Legendre function to test if there is an integer, say x, such that
x2 = (i2 − k)/P mod Q and secondly the Tonelli Shanks algorithm is used to find
such an x. LGroupSearch is also used to find r.

LGroupSearch:=proc(lower,upper,P,k,Q)

local i, temp, foundx, foundy:

for i from lower to upper do

temp:=(i^2-k)/P mod Q:

if(legendre(temp,Q)=1) then

foundx:=i:

foundy:=TonSh(temp,Q):

RETURN([foundx,foundy]):

fi:

od:
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print("need different bounds"):

end:

This procedure computes the order of G.

LGroupOrder:=proc(G)

local k:

k:=LGroupApplyOp([G[3],0],[G[3],0],G):

RETURN(G[2]-legendre(k/P)):

end:

This procedure finds g−1.

ComputeInverse:=proc(pt,Q)

local z:

z:=Q-pt[2]:

RETURN([pt[1],z]):

end:

LGroupOrder:=proc(G)

RETURN(G[2]-legendre(G[1]/G[2])):

end:

A.3 Feige-Fiat-Shamir Authentication Procedures

The following procedures are specific to the FFS authentication scheme.

The GetPrivateKey procedure generates such a k tuple.BoundList is a one di-
mensional array consisting of bounds within which each component of the k-tuple is
chosen. For example BoundList= [[100, 200], [250, 400], [1000, 5000]].

GetPrivateKey:=proc(BoundList,t,P,k,Q) # t=|boundlist|

local i, X, Y:

#t:=nops(BoundList):

for i from 1 to t do

X[i]:=LGroupSearch(BoundList[i][1],BoundList[i][2],P,k,Q):

od:

Y:=convert(X,list):

RETURN(Y):

end:
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The ComputePublicKey Procedure computes the FFS public key which is another
k tuple.

ComputePublicKey:=proc(SList,t,P,a,Q)

local i, y, v, temp:

#t:=nops(SList):

for i from 1 to t do

temp:=ApplyOp(SList[i][1],SList[i][2],SList[i][1],

SList[i][2],P,a,Q):

#find s[i]^2

v[i]:=ComputeInverse(temp,Q): # find s[i]^2 inverse

#print(v[i]):

od:

y:=convert(v,list):

RETURN(y):

end:

The first step in FFS is for Alice to choose r ∈ G and compute x := r2 and send
this x to Bob. The ComputeX Procedure computes such an x given some choice of r.

ComputeX:=proc(pt,P,a,Q)

RETURN(ApplyOp(pt[1],pt[2],pt[1],pt[2],P,a,Q)):

end:

The ComputeY Procedure computes such a Y given an eList.

ComputeY:=proc(pt,SList,eList,t,P,a,Q)

local i, y, temp:

if(eList[1]=0) then

temp:=LGroupIdentity:

else

temp:=SList[1]:

fi:

for i from 2 to t do

if(eList[i]=0) then

temp:=ApplyOp(temp[1],temp[2],LGroupIdentity[1],

LGroupIdentity[2],P,a,Q):

else

temp:=ApplyOp(temp[1],temp[2],SList[i][1],

SList[i][2],P,a,Q):

fi:

od:

y:=ApplyOp(pt[1],pt[2],temp[1],temp[2],P,a,Q):

RETURN(y):

end:
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The next step is for Bob to compute Z := Y 2 ∗ V e1
1 ∗ ... ∗ V

ek
k . The ComputeZ

Procedure computes such a Z given a Y .

ComputeZ:=proc(pt,VList,eList,t,P,a,Q) # pt should be y computed above

local i, y, z, temp:

if(eList[1]=0) then

temp:=LGroupIdentity:

else

temp:=VList[1]:

fi:

for i from 2 to t do

if(eList[i]=0) then

temp:=ApplyOp(temp[1],temp[2],LGroupIdentity[1],

LGroupIdentity[2],P,a,Q):

else

temp:=ApplyOp(temp[1],temp[2],VList[i][1],VList[i][2],P,a,Q):

fi:

od:

y:=ApplyOp(pt[1],pt[2],pt[1],pt[2],P,a,Q):

z:=ApplyOp(y[1],y[2],temp[1],temp[2],P,a,Q):

RETURN(z):

end:

The last step is authentication verification. To do this Bob checks if Z = X. If
so, then Bob accepts Alice. The CheckFFS Procedure checks if Z = X and returns
true if Alice’s identity is authenticated and false if her authentication is denied.

CheckFFS:=proc(X,Z)

if(X[1]-Z[1]=0 and X[2]-Z[2]=0) then

RETURN(true):

else

RETURN(false):

fi:

end:

A.4 LGroup El Gamal Procedures

The LGroup Numbered Procedure is used in the LGroup Embed Procedure.

LGroupNumberembed:=proc(xvalue,Gp,tolerance)

local j, lb, ub, pt:

print(Gp[2]);



97

if((xvalue+1)*tolerance-1 < Gp[2]) then

pt:=LGroupSearch(xvalue*tolerance, (xvalue+1)*tolerance-1,Gp):

RETURN(pt):

else

printf("The embedding interval is too large for the group\n"):

fi:

end:

The LGroupEmbed procedure embeds messages into LGroups.

LGroupEmbed:=proc(Message,Gp,tolerance)

local AMessage, noofpackets, j, pt, N:

AMessage:=ASCIIPad(Message,floor(Gp[2]/(tolerance+1))):

noofpackets:=nops(AMessage):

for j from 1 to noofpackets do

N:=(op(0,op(1,AMessage))[j]);

pt[j]:=LGroupNumberembed(N,Gp,tolerance):

od:

pt:=convert(pt,list):

RETURN(pt):

end:

The LGroupUnembed procedure unembeds messages from LGroups.

LGroupUnembed:=proc(ptlist,tolerance)

local j, k, X, N:

k:=nops(ptlist):

for j from 1 to k do

X[j]:=floor(ptlist[j][1]/tolerance):

od:

X:=convert(X,list):

ASCIIDepad(X);

end:

The LGroupPubKey procedure generates an LGroup El Gamal public key.

LGroupPubKey:=proc(lowerbound,upperbound,x,G)

local g,b:

g:=LGroupSearch(lowerbound,upperbound,G):

b:=LGroupTimes(g,x,G):

RETURN([b,g,G]):

end:
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The LGroupEncryption procedure encrypts a plaintext.

LGroupEncryption:=proc(r,PubKey,M)

local y,s,e:

y:=LGroupTimes(PubKey[2],r,PubKey[3]):

s:=LGroupTimes(PubKey[1],r,PubKey[3]):

e:=LGroupApplyOp(s,M,PubKey[3]):

RETURN([e,y]):

end:

The LGroupDecryption procedure decrypts a cyphertext.

LGroupDecryption:=proc(e,y,x,G)

local c, d:

d:=LGroupTimes(y,x,G):

c:=LGroupApplyOp(ComputeInverse(d,G),e,G):

RETURN(c):

end:
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Appendix B

A POLYNOMIAL TIME ALGORITHM FOR
DETERMINING IF AN INTEGER IS A SQUARE

B.1 The Issquare Algorithm

Let n ∈ Z+ and consider I1 = [0, n]. An analogous algorithm can be described when
n < 0. If n = 1 then, clearly, n is a square. Thus, we assume n > 1. Define
f(x) = x2 − n. It is clear that f is continuous. Moreover, f(0) = −n < 0 and
f(n) = n2 − n > 0. Thus, we may apply the Intermediate Value Theorem to obtain
x0 ∈ I1 such that f(x0) = 0. Now, consider [0, n

2
] and [n

2
, n]. Since f , when restricted

to I1, is one-to-one, we may conclude that x0 ∈ [0, n
2
] or x0 ∈ [n

2
, n] and not both. We

compute f(0), f(n
2
), and f(n). There are three possibilities: f(0) < 0, f(n

2
) < 0, and

f(n) > 0 or f(0) < 0, f(n
2
) > 0, and f(n) > 0 or f(n

2
) = 0. If the first case holds,

then we choose I2 = [n
2
, n]. If the second case holds, then we choose I2 = [0, n

2
]. If

the third holds then, we set α = n
2

and check if α2 = n. If so, then we know that n
is a square. Otherwise, we know that n is not a square.

Suppose that Im = [a, b] has been defined and x0 ∈ Im. We describe how to
define Im+1. Since f , when restricted to Im, is one-to-one, we may conclude that
x0 ∈ [a, a+b

2
] or x0 ∈ [a+b

2
, b] and not both. We compute f(a), f(a+b

2
), and f(b). There

are three possibilities: f(a) < 0, f(a+b
2

) < 0, and f(b) > 0 or f(a) < 0, f(a+b
2

) > 0,
and f(b) > 0 or f(a+b

2
) = 0. If the first case holds, then we choose Im+1 = [a+b

2
, b]. If

the second case holds, then we choose Im+1 = [a, n
2
]. If the third holds then, we set

α = a+b
2

and check if α2 = n. If so, then we know that n is a square. Otherwise, we
know that n is not a square.

We repeat this process until, for some integer k, (1
2
)k ·n < 1. Then, x0 ∈ Ik ⊂ [0, n]

and length(Ik) < 1. Note that we can make this final interval as small as desired.
We search Ik for an integer. Since length(Ik) < 1, there is at most one integer in

Ik. If there is no integer in Ik, then we know that n is not a square. If we find an
integer, say α, the we check if α2 = n. If not, then we know that n is not a square.
If so, then we know that n is a square.

B.2 Time Complexity Considerations

A real valued function f is said to be Big O of a real valued function g, if for all
sufficiently large x we have f(x) ≤ a · g(x) for some constant a. If f is Big O of g,
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we write f = O(g). Some important properties of Big O notation are summarized in
the following theorem. For a proof see [6].

Theorem B.1 Let f and g be real valued functions. Then,
(a) O(f) +O(f) = O(f)
(b) O(f) ·O(g) = O(f · g)

An algorithm is said to run in polynomial time if and only if its running time is
upper bounded by a polynomial in the size of the input for the algorithm. The size
of the input, n, for the issquare algorithm is less than or equal to log2(n). Thus, if we
can find a polynomial, say f , such that the running time of the issquare algorithm is
less than or equal to f(log2(n)), then we may conclude that the issquare algorithm
runs in polynomial time.

Phrased in terms of Big O notation, if we can show that there is a polynomial f
such that the issquare algorithm has a running time of O(f(log2(n))), then we may
conclude that the issquare algorithm runs in polynomial time.

Let COMP denote the greatest number of computations performed in each step
of the issquare algorithm and S denote the number of steps in the issquare algorithm.

It is well known that squaring an integer, subtracting integers, and making a
comparison of two integers are all polynomial time operations. Indeed, for squaring
an integer x is O(log2(x2)), subtraction of x2 − P is O(max{log2(P ), log2(x2)}), and
a comparison of integers a, b is O(max{log2(a), log2(b)}). Thus, by Theorem B.1.a
COMP is polynomial time in log2(P ).

The issquare algorithm has, at most, S = log2(P ) steps. Thus, the runtime of
the issquare algorithm is bounded above by S · COMP , which, by Theorem B.1.b is
polynomial time. So, the issquare algorithm runs in polynomial time.




