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Fig. 7. Harmonic elimination up to 25th. (a) Lowest THD for RAHEM and
AHEM. (b) Switching number in a cycle corresponding to the lowest THD for
RAHEM and AHEM.

it is shown that the lowest THD of RAHEM is a little higher
than that of AHEM for most of the modulation-index range.
The upper bound switching number for RAHEM is 48, and it is
84 for AHEM.

C. Harmonic Elimination Up to 31st

The fundamental frequency-switching scheme is used to
eliminate the 19th, 23rd, 29th, and 31st harmonics, and negative
square waves are used to eliminate the 5th, 7th, 11th, 13th,
17th, and 25th harmonics. The equation of the fundamental
frequency-switching scheme can be

cos(θ1) + cos(θ2) + cos(θ3) + cos(θ4)

+ cos(θ5) = m

cos(19θ1) + cos(19θ2) + cos(19θ3) + cos(19θ4)

+ cos(19θ5) = 0

cos(23θ1) + cos(23θ2) + cos(23θ3) + cos(23θ4)

+ cos(23θ5) = 0

Fig. 8. Switching angles for harmonic elimination up to 31st.

cos(29θ1) + cos(29θ2) + cos(29θ3) + cos(29θ4)

+ cos(29θ5) = 0

cos(31θ1) + cos(31θ2) + cos(31θ3) + cos(31θ4)

+ cos(31θ5) = 0. (12)

The switching-angle solution is shown in Fig. 8. Fig. 9(a)
shows the lowest THD for RAHEM and AHEM, and Fig. 9(b)
shows the switching numbers corresponding to the lowest
THDs for RAHEM and AHEM. From the figure, it is shown
that the lowest THD of RAHEM is a little higher than that
of AHEM for most of the modulation-index range. But, the
upper bound switching number for RAHEM is 78, and it is 144
for AHEM.

From the cases of an 11-level multilevel converter to elim-
inate harmonics up to 17th, 19th, 23rd, 25th, 29th, and 31st,
it can be concluded that the lowest THDs for RAHEM and
AHEM for all the cases are similar for much of the modulation-
index range. However, the switching numbers for RAHEM
are much lower than that of AHEM. Usually, the switching
numbers of RAHEM are only half of that of the corresponding
AHEM.

For practical applications, the lookup table should be as
small as possible to achieve high dynamic performance. In the
proposed method, the size of the lookup table can be computed
as (mmax/0.01) × 2 × L bytes (here, L is the number of
H-bridges, and 0.01 is the modulation-index control resolution).
For example, for an 11-level multilevel inverter, there are five
H-bridges for each phase (L = 5). Therefore, the lookup table
size is around 5000 B, and a very small memory chip can
hold all the switching-angle data. Therefore, such a small
lookup table will be very helpful for the system to achieve
high dynamic transient performance. Because low-order volt-
age harmonics have been removed by harmonic elimination,
the system’s dynamic performance will be comparable to
other modulation strategies, which have much higher switching
frequencies.

Another issue for the cascaded H-bridge multilevel inverter is
uneven-load power sharing among different dc sources. In the
proposed method, this can be fixed by rotating the switching
angles among all the H-bridges every half cycle or every
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Fig. 9. Harmonic elimination up to 31st. (a) Lowest THD for RAHEM and
AHEM. (b) Switching number in a cycle corresponding to the lowest THD for
RAHEM and AHEM.

Fig. 10. (a) 10-kW multilevel converter. (b) FPGA controller for multilevel
converter.

cycle. It is simple and effective to balance uneven load among
different dc sources [3].

RAHEM can be used for most any multilevel-converter-
based power-electronics application. One promising applica-
tion is for cascaded H-bridge multilevel-converter-based static
Var compensation (STATCOM). This scheme can easily meet
IEEE 519 [36] harmonic standards for grid connection and
reduce the filter cost. Therefore, the whole system performance
can be increased.

Fig. 11. (a) Experimental multilevel-converter phase voltage for AHEM to
eliminate harmonics up to 31st (m = 3.78). (b) Line–line voltage. (c) Nor-
malized FFT analysis of line–line voltage shown in (b) (THD = 3.06%).
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Fig. 12. (a) Experimental multilevel phase voltage of RAHEM to eliminate
harmonics up to 31st (m = 3.78). (b) Line–line voltage. (c) Normalized FFT
analysis of line–line voltage shown in (b) (THD = 3.52%).

IV. EXPERIMENTAL VERIFICATION

To experimentally validate the proposed algorithm, a proto-
type three-phase 11-level cascaded H-bridge multilevel inverter
has been built using 60-V 70-A MOSFETs as the switching
devices, which is shown in Fig. 10(a). A battery bank of
15 SDCSs of 36 V each feed the inverter (five SDCSs per
phase). A real-time controller based on Altera FLEX 10-K
field-programmable gate array (FPGA) is used to implement
the algorithm with 8-µs control resolution. For convenience of
operation, the FPGA controller was designed as a card to be
plugged into a personal computer, which used a peripheral-
component-interconnect (PCI) bus to communicate with the
microcomputer. The FPGA controller board based on a PCI bus
is shown in Fig. 10(b).

The m = 3.78 and harmonic elimination up to 31st case
was chosen for comparison between RAHEM and AHEM to
implement with the multilevel converter. Fig. 11 shows the
experimental phase voltage and line–line voltage for AHEM,
and Fig. 11(c) shows the corresponding normalized fast Fourier
transform (FFT) analysis of the line–line voltage. Fig. 12 shows
the experimental phase and line–line voltage for RAHEM, and
Fig. 12(c) shows the corresponding normalized FFT analysis
for the line–line voltage.

From Figs. 11 and 12, it is shown that the harmonics have
been eliminated up to 31st for both AHEM and RAHEM. Their
experimental THD are 3.06% and 3.52%, and this corresponds
well with the theoretical computation of 3% and 2.75%. The
switching number is 78 for RAHEM but 121 for AHEM.

V. CONCLUSION

A RAHEM has been proposed and developed to eliminate
any number of specific harmonics for multilevel converters. It
can be derived from the computational results that this method
can reduce the switching frequency and achieve similar THD to
AHEM. The experiments validated that the proposed method
can eliminate all the specified harmonics, and the switching
frequency is dramatically decreased.
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