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ABSTRACT 

Northern peatlands are major terrestrial carbon sinks, storing 415 ± 150 Gt of 

carbon. The composition of peatland vegetation affects this carbon storage capacity, and 

thus quantifying the vegetation helps to constrain uncertainty in peatland carbon storage 

estimates. Ground layer vegetation, such as Sphagnum sp. moss contributes greatly to 

carbon storage capacity. In forested or treed peatlands, the tree canopy structure directly 

influences peatland solar insolation, soil temperature, and water table levels. Each of 

these factors impacts the ground layer vegetation. Currently, there is uncertainty about 

how the peatland tree canopy structure is influenced by elevated levels of carbon dioxide 

(CO2) and temperature. Providing canopy structural metrics in a nondestructive, spatially 

comprehensive way across different temperature and CO2 treatments is challenging for 

traditional methods such as destructive harvesting, Digital Hemispherical Photography 

(DHP), and allometric regressions. Terrestrial Laser Scanning (TLS) is well-suited to 

provide non-destructive detailed horizontal and vertical canopy structural information. 

As part of the Spruce and Peatland Responses Under Changing Environments 

(SPRUCE) study located in northern Minnesota, USA, we use TLS to evaluate leaf area 

index (LAI), leaf area density, and leaf inclination angle over time (2015 - 2022) and 

space of two conifer species, Picea mariana (black spruce) and Larix laricina (eastern 

larch). The SPRUCE site is in a treed peatland bog under elevated CO2 and temperature 

conditions. The research questions in this study are 1) How accurately can we predict the 

LAI of the spruce and larch trees using TLS data? 2) How are the spruce and larch tree 
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canopy structures within 12 SPRUCE plots changing from 2015 - 2022? We expected 1) 

A volumetric pixel-based model (VCP) will predict LAI with an accuracy of 90% as 

validated by destructively harvested and DHP LAI estimates 2) Under elevated CO2 and 

temperature, LAI will increase, leaf area density will decrease in lower canopies, and leaf 

inclination angles will become more vertical. At the species level, we expected the spruce 

and larch trees to respond with opposing trends for each metric under the same treatment. 

Using TLS data, we developed a modified VCP model that uses measures of point 

contact frequency to estimate LAI, leaf inclination angles, and leaf area density. The 

results indicate that the model predicts LAI with a coefficient of determination of 0.89 

(R2 = 0.89), an RMSE of 0.98, and a normalized RMSE = 0.17. We also found that the 

model maintains moderate accuracy across voxel size input parameters, suggesting it may 

maintain accuracy in different treatment conditions where tree structural relationships can 

change. Our canopy structural results supported the hypothesis that LAI increases more 

significantly over time under warmer conditions when compared to control plots. Lower 

canopy leaf area density trends did not support the hypothesis as they showed no 

statistically significant trends across time. Leaf inclination angle trends through time did 

not support the hypothesis as they tended to decrease. As temperatures increased across 

the temperature gradient, though, leaf angles became more vertical in upper canopies 

under elevated CO2, leading to inconclusive support for or against the hypothesis. Species 

data did not support the hypothesis that spruce and larch canopy structures would differ 

significantly under the same treatments. The larch LAI, however, did not increase as 

significantly through time as the spruce under elevated CO2 conditions. Additionally, we 
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identified anomalous fluctuations in time series data and proposed potential temperature 

thresholds where LAI differed the most under ambient or elevated CO2 conditions.   

The findings from this study suggest that accurately quantifying canopy structure 

through time may be possible in different environmental conditions and species using 

TLS. We add support to previous findings that LAI increases more significantly through 

time under warming conditions compared to control conditions. These results 

demonstrate TLS’s utility for making species-level canopy structural estimates across 

horizontal and vertical profiles. Incorporating vertical canopy profile metrics such as leaf 

area density with LAI data can assist in better explaining how LAI is changing across 

time and temperature gradients.   
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CHAPTER ONE: INTRODUCTION 

Peatlands are wetlands that are present in every climatic zone and continent, 

covering about 4 million km2 of land globally, most of them occurring in northern 

(boreal) and temperate regions. They form when waterlogged substrate accumulates, 

leading to a low oxygen environment. Depending on the type of peatland, substrate 

accumulation depth varies from 10 cm to 100 cm before a wetland is classified as a 

peatland (Xu et al., 2018). The peatland’s anoxic environment slows microbial 

decomposition and results in higher net rates of organic matter production. Large stores 

of partially decomposed organic matter can then accumulate for thousands of years, 

forming the abundances of peat that make up the ecosystem. There are two main types of 

peatlands, fens and bogs. Each type is classified based on its hydrology, morphology, and 

dominant vegetation. Fens are fed by groundwater (geogenous) and they are located in 

land depressions. They are characterized by a neutral pH and their dominant vegetation 

includes grasses, sedges, and rushes. Bogs are acidic, precipitation fed (ombrogenous) 

and raised above the groundwater. Boreal bogs are characterized by Sphagnum spp. moss 

and woody vegetation (Joosten & Clarke, 2002) such as Picea mariana and Larix 

laricina.  

Picea mariana (black spruce) and Larix laricina (eastern larch) are the dominant 

tree species characterizing the boreal peatlands across the northeastern United States. 

Spruce trees are evergreen conifers that are shade tolerant and are typically more 

dominant than larch trees. They are often found in low drainage peatlands and their 
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abundance is sensitive to elevated water temperature (Evans et al., 2016). They are not 

usually found in the wetter regions of peatlands as they incur needle damage with excess 

water intake (Islam et al., 2003). The larch trees are a deciduous conifer and can be found 

within the same ranges as the black spruce. They are less shade tolerant and have 

exhibited increased abundance in more open and wetter regions of peatlands (Montague 

& Givnish, 1996). Under drying conditions, they have shown increases in fine root 

growth (Malhotra et al., 2020). Previous studies have found that the Larix genus has more 

symmetric leaf area estimates than the Picea genus (Sterba et al., 2019). Spruce and larch 

biomass and aboveground net primary production are significant pathways for carbon to 

enter boreal peatlands (Hanson et al., 2020).      

Spruce and larch tree presence impacts peatland understories and carbon storage 

capacity. In forested peatlands, the canopy cover directly influences insolation and water-

holding capacity (Strack et al., 2019). Tree and vegetation presence affects the rate of 

carbon flux in peatlands through vascular transport controls, such as evapotranspiration, 

on the water table and temperature (Kettridge et al., 2013). Changes in tree architecture 

including leaf area index (LAI), leaf area density, and leaf inclination angles each impact 

the hydrologic and atmospheric dynamics of peatlands. Vertical leaf angles shifting to 

flatter angles can result in increased light interception, leaf temperature, and lower rates 

of carbon dioxide fixation (L.-X. Liu et al., 2003). Changes in the density of leaves in the 

canopy affects soil moisture and temperature, impacting water availability in the 

understory. von Arx et al. (2013) found that LAI below 4 created environments not 

suitable for seedling establishment in both conifer and broadleaf forests. Leaf area 

density differences throughout the vertical canopy profile impacts leaf respiration and 
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carbon budgets as higher canopy leaves have higher rates of dark and light respiration 

(Souza et al., 2021). Quantifying changes in the overstory canopy of peatlands may add 

insight to how peatland carbon budgets can change temporally and spatially.  

Recently, with average warming temperatures and rising carbon dioxide (CO2) 

levels peatlands are at risk of drying out and shifting from carbon sink to carbon source. 

As peatlands dry out due to warmer temperatures, water tables drop, causing greater 

levels of oxygen to make stable carbon labile, increasing emissions. Boreal regions, the 

region of the globe with the highest density of peatlands, are currently warming at twice 

the rate of the global terrestrial ecosystem average (Holmgren et al., 2015). This 

underscores the importance of estimating temperature thresholds where boreal peatland 

carbon emissions may change. Recent studies have found that warming resulted in 

peatlands shifting from carbon sinks to carbon sources (Hanson et al., 2020; J. Liu et al., 

2022). The estimated emissions projections for boreal peatlands will benefit from being 

further constrained by boreal conifer canopy structure empirical data, granting further 

confidence in future peatland carbon emission estimates.  

The Spruce and Peatland Under Changing Environments project (SPRUCE; 

https://mnspruce.ornl.gov/) is an in-situ whole ecosystem study in a boreal forested 

peatland bog located in the Marcell Experimental Forest in northern Minnesota, USA 

(N47°30′19″, W93°27′18″). Here, researchers are using warming and elevated CO2 

treatments to measure how the bog responds to a changing environment. The bog is 

elevated at 418 m above mean sea level. It is an ombrotrophic 8.1 ha acidic bog with a 

pore water pH of approximately 3 to 4. Peat depths are on average 2.27 m and have a 

basal age of 5,100 - 11,100 cal BP based on the deepest centimeter of peat (McFarlane et 

https://mnspruce.ornl.gov/
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al., 2018; Sebestyen & Griffiths, 2016). SPRUCE researchers have placed 12.8 m 

diameter, 7 m tall open-top octagonal chambers around 10 plot sections of the bog. Two 

plots are under control conditions and have no chamber. Each plot comprises a total area 

of 114.8 m2. The warming treatments are +0°C, +2.25°C, +4.5°C, +6.75°C, and +9°C. 

These treatments began in June 2014 and are achieved via blowing heated air 1 m above 

the plot surface and with deep peat heating approximately 3 m below the surface. One set 

of 5 chambered plots are undergoing the warming treatments and are injected with +500 

ppm CO2 while another group of 5 plots undergoes warming but are not injected with 

CO2 (Hanson et al., 2016). The CO2 treatments began in August 2015.     

SPRUCE researchers have been actively collecting empirical data to develop a 

modified version of the land surface component (ELM) of the Energy Exascale Earth 

System Model (E3SM), known as ELM-SPRUCE. They have incorporated 

microtopography, isotope, microbial processes, phenological processes, and root biomass 

data among many other empirical datasets (Carrell et al., 2022; Graham et al., 2022; 

Malhotra et al., 2020; Schädel et al., 2020). ELM-SPRUCE uses a model-experimental 

coupling framework to incorporate these data and make predictions about carbon 

emissions. SPRUCE researchers have found increased labile carbon outputs and methane 

emissions with elevated temperature conditions (R. M. Wilson et al., 2021). Currently the 

model incorporates canopy structural data such as tree volume, tree height, and LAI. LAI 

is currently estimated using specific leaf area, fraction of leaf N in RuBisCO (flnr), leaf 

carbon to nitrogen ratio, stem to leaf ratio, and fine root to leaf ratio (Shi et al., 2020b). 

An empirical dataset of canopy structure would help to constrain the uncertainty 

associated with these estimates.  
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Terrestrial laser scanning (TLS) is an active, ground-based lidar remote sensing 

technique. Lidar works by emitting a laser pulse at an object of interest and uses the 

timing of the return pulse, the speed of light, and the refractive index of the atmosphere to 

determine the distance from the scanner to the object. The TLS sensor provides other 

information about the nature of the return pulse including the intensity of reflectance, the 

number of return pulses, and the vector that the pulse travels. This information adds 

applicable elements for characterizing areas or objects of interest. Using mirrors, the 

instrument emits large numbers of laser pulses each second, generating dense three-

dimensional datasets called point clouds. Researchers use multiple TLS scan positions 

surrounding the area of interest to avoid potential data gaps, or occlusion. In forests, the 

number of necessary scan positions is determined based on tree density and spatial 

patterns (L. Li et al., 2021). The subsequent point clouds provide detailed x, y, z 

coordinate information about scanned objects like vegetation.   

TLS point clouds can provide detailed geometric data about both the vertical and 

horizontal profile of the black spruce and eastern larch at the SPRUCE site. The site 

presents some unique challenges that make collecting accurate LAI measurements 

challenging. Three well-established methods for measuring LAI are: destructive 

harvesting, allometric-based regressions, and digital hemispherical photography (DHP). 

Destructive harvesting involves cutting trees down and measuring leaves with scanners. It 

is considered the most accurate means of LAI estimation, but it cannot be consistently 

used as it disrupts the bog’s functionality. Previously, spruce researchers used destructive 

biophysical linear regressions to derive allometric relationships for estimating LAI, but 

these were pre-treatment and do not account for changes in canopy structure or LAI due 
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to warming and CO2 treatments (Griffiths et al., 2017). DHP is a challenging method to 

apply at the SPRUCE site because the chamber walls obscure photos. TLS is a useful 

alternative to these methods as it is nondestructive and unaffected by the chamber walls. 

However, like the allometric method, TLS requires validation data that can impede its 

predictive capacity if the validation data does not cover all vegetation that is under each 

condition of interest. Parameters can be highly sensitive to model validation, which 

highlights the need for a model that can consistently predict LAI with moderate accuracy 

across different input parameters.  

The need to quantify LAI independently of allometric relationships is based on 

the observation that many of the plots in the warmest chambers are losing their 

understory leaves, but the LAI alone does not quantify the understory volume of leaves. 

A volumetric-based model using J. W. Wilson, (1960)’s contact frequency method offers 

a unique workflow for quantifying both the vertical and horizontal canopy profile 

(Almeida et al., 2019; Hosoi & Omasa, 2006; S. Li et al., 2017). With this model, 

quantification of LAI, leaf area density, and leaf inclination angle is possible, enabling us 

to analyze the upper portion to the lowest portion of the canopy across time and 

treatments.   

Thesis Organization 

This thesis contains two chapters that use TLS, destructive harvesting, and DHP 

methods to investigate the canopy structure of trees at the SPRUCE site. TLS point 

clouds are the primary means of quantifying canopy structure throughout each study. In 

the first study, we developed and validated a volumetric pixel (voxel)-based model that 

uses the contact frequency principle to quantify the LAI, leaf area density, and the leaf 
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inclination angle of the dominant boreal trees at the SPRUCE site. After validating the 

model against eight destructively harvested individual tree LAI estimates and two DHP 

LAI estimates we found that the model maintained moderately consistent accuracy across 

different input parameters. This result provided evidence that the model would be 

applicable to estimate canopy metrics in the treatment plots. In the second study, we 

applied the validated model to the SPRUCE plots to quantify canopy structural traits 

across time and temperature gradients under elevated and ambient CO2. Additionally, we 

compared these plots to the unchambered control plots. Our main finding indicated that 

the LAI in the plots under warming was significantly increasing over time and ambient 

CO2 plot LAI was significantly decreasing as temperatures increased, but LAI under 

elevated CO2 did not significantly change with increasing temperature. This thesis 

provided a method for LAI estimation that maintains accuracy across input parameters 

and extended current studies about how tree canopies change over time under different 

levels of CO2 and temperature.    
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CHAPTER TWO: VALIDATING A TERRESTRIAL LASER SCANNING & VOXEL-

BASED METHOD TO MEASURE CONIFER CANOPY STRUCTURE 

Introduction 

Developing accurate methods and models to quantify canopy structural metrics is 

integral for monitoring vegetation and its impacts on processes such as photosynthesis, 

evapotranspiration, and respiration (Gonzalez-Meler et al., 2004). Canopy structural 

metrics can be challenging to accurately estimate across large spatial and temporal 

ranges. Many previous studies have found that terrestrial laser scanning (TLS) can 

effectively be used to measure canopy structural metrics, across broad spatial and 

temporal scales (Calders et al., 2018; Disney, 2019, p. 20; L. Li et al., 2021; Olsoy et al., 

2014). Despite the evidence supporting TLS as an effective means of canopy metric 

quantification, models still require validation against manually made structural 

measurements, which are sometimes not representative of trees under different 

environmental conditions. This inconsistency can make allometric-based models less 

effective (Sterba et al., 2019). Creating a model for canopy structural estimation that 

maintains moderate accuracy across input parameters is needed to estimate canopies 

under conditions other than the original validation canopy conditions.  

Canopy Metrics Significance 

Leaf area index (LAI), the total projected leaf area per unit ground area (m2/m2), 

represents the plant surface available for sunlight and carbon dioxide (CO2) intake. It is a 

necessary component for assessing and scaling photosynthesis and evapotranspiration 

within an ecosystem. It is therefore an essential ecosystem model input that 

mechanistically describes ecosystem structure and function and simulates responses 
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under changing conditions (Wang & Fang, 2020). LAI is influenced by climate, soil 

fertility, tree density, species, and water availability (Bond-Lamberty et al., 2002). 

Overstory LAI affects understory resource availability which subsequently impacts 

regeneration, succession dynamics, and species competition (Yazaki et al., 2016).  

Including LAI in ecosystem models has improved model predictive outcomes in a 

variety of ecosystems. Incorporating an LAI parameter to the Penman-Monteith equation 

improved estimates of evapotranspiration by 14% in North American grasslands, wet 

tundra, temperate coniferous forests, temperate deciduous forests, xeric shrublands, and 

boreal forest (Qu & Zhuang, 2018). Climate models applied across China and Canada 

revealed that LAI estimates improved gross primary production, evapotranspiration, and 

water use efficiency predictions (Asaadi et al., 2018; Y. Li et al., 2018; & Qu & Zhuang, 

2020). Improving LAI predictions supports more representative terrestrial ecosystem 

models.  

Methods of LAI Estimation  

LAI can be estimated directly and indirectly. One main direct method is 

destructive harvesting where tree leaves are manually collected (Norby et al., 2003). Leaf 

surface area, or specific leaf area (SLA) can be estimated from the collected samples 

using a scanner and finding the leaf area per unit of dry leaf mass. LAI is calculated by 

multiplying the SLA and the total dry mass of each foliage age class (Fang et al., 2019). 

Direct measurements can be spatially restricted due to their labor-intensive nature, but 

they are considered the most accurate estimate of LAI. Indirect methods include digital 

hemispherical photography (DHP) and satellite, airborne, and terrestrial remote sensing. 

DHP is a well-accepted, indirect ground truth method for estimating LAI (Alexandridis et 
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al., 2013; Gilardelli et al., 2018). It involves using a fisheye lens to calculate the gap 

fraction from the inversion of the Beer-Lambert law, which represents the ratio of sky 

pixels to total pixels in the image (Equation 2.1) (Chianucci, 2019).  

𝑃𝑃(𝜃𝜃) =  𝑒𝑒𝑒𝑒𝑒𝑒 �
−𝐺𝐺(𝜃𝜃)𝛺𝛺(𝜃𝜃)𝐿𝐿

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
�                                                                                       (2.1) 

𝑃𝑃(𝜃𝜃) is the gap fraction, 𝜃𝜃 is the zenith view angle, 𝐺𝐺(𝜃𝜃)  is the mean projection 

of a unit leaf area projected on a plane normal to the zenith direction, 𝛺𝛺(𝜃𝜃) is the 

clumping factor, and 𝐿𝐿 is the effective leaf area index. From the Beer-Lambert law, LAI 

using hemispherical photography is estimated using equation 2.2 (Chianucci, 2019). 
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 𝑃𝑃𝑖𝑖(𝜃𝜃)� 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐                                                           (2.2)  

Where 𝑛𝑛 is the number of hemispherical measurements.   

Terrestrial remote sensing is an indirect method that uses gap- and contact 

frequency-based or biophysical regression-based models to estimate LAI. Biophysical 

regressions rely on relationships between vegetation structural traits, such as height and 

diameter at breast height (DBH), and ground truth LAI values to develop models that 

estimate unknown LAIs based on other tree traits (Olsoy et al., 2016). Methods relying 

on different tree attributes to predict LAI can be prone to error when trees experience 

varying environmental conditions (Chianucci & Cutini, 2013). For example, trees of the 

same species and height may not have the same LAI if one tree is under conditions that 

cause it to lose more leaves than the other tree. Gap- and contact frequency-based models 

are advantageous in situations where environmental conditions can alter allometric 

relationships as they estimate LAI using ratios of leaf occupied space to leaf unoccupied 
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space (Cifuentes et al., 2014; Hosoi & Omasa, 2006; S. Li et al., 2017; Seidel et al., 

2012). These ratio-based estimations are made independently for each canopy of interest.  

TLS-based LAI estimates are generally performed at finer scales and higher point 

densities than Airborne Laser Scanning (ALS) methods, better enabling TLS data-based 

LAI estimates to effectively correct for sources of error. TLS point cloud densities can be 

over 100,000 points/m2 (Cerreta et al., 2020) and footprints range from 0.1 cm to 3 cm  

(Yin et al., 2020). The TLS’s dense point cloud enables the separation of photosynthetic, 

or leaf material, from non-photosynthetic material, or wood material, for the estimation 

of LAI. It is also commonly used to estimate the clumping indices, leaf angle 

distributions, leaf area density profiles, and projection coefficients. ALS’s coarser spatial 

resolution makes it more challenging to distinguish between leaf and wood material, 

making many airborne-based LAI estimations effective LAI (eLAI) measurements 

(Alonzo et al., 2015; Lin & West, 2016; Tang et al., 2014; Zhu et al., 2018, 2020). An 

eLAI is an estimation of LAI where wood material is included, or clumping is not 

corrected for. The high-density data derived from TLS enables the geometric analysis of 

features down to a single leaf or branch scale, where ALS data can result in coarser, 

sometimes less-accurate LAI estimates.  

Forms of Error Impacting Lidar-Based LAI Estimation 

Woody material is a major source of error in TLS and ALS LAI estimation. Wood 

components can contribute to an average LAI overestimation of 17% across conifer, 

broadleaf, and mixed trees (Zhu et al., 2018). The amount of wood that makes up 

vegetation can be estimated by subtracting leaf-off return pulses from leaf-on return 

pulses, but this requires the vegetation to be deciduous or have a leaf-off stage (Barclay et 
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al., 2000; Clawges et al., 2007). Radiometric and geometric information derived from 

TLS data is a more widely applicable approach to separate leaf and wood points (Atik et 

al., 2021; Krishna Moorthy et al., 2020; Sun et al., 2021; Vicari et al., 2019; Zhao et al., 

2020; Zhu et al., 2018). Many researchers have found that geometric features are highly 

effective for distinguishing between leaves and wood, having accuracies ranging from 

76% to 91.5% (Krishna Moorthy et al., 2020; Vicari et al., 2019; Yun et al., 2016; Zhu et 

al., 2018). However, features of reflectance may be more applicable for distinguishing 

between leaf and wood features in conifers where needle geometries are more complex at 

a finer scale than broadleaved trees. 

 Leaf inclination angle variation impacts the interception of light in the canopy 

and can affect lidar beam leaf contacts and therefore is a source of error for estimation of 

canopy traits like LAI, NDVI, and the fraction of absorbed photosynthetically active 

radiation (Huemmrich, 2013). The leaf angle distribution represents the distribution of 

the leaf inclination angles throughout the canopy at different viewing angles. It is 

calculated as the angle between the leaf normal and the zenith (Y. Li et al., 2017). The 

distribution of leaves through canopies can vary depending on canopy height, seasonality, 

species type, and resource availability (Raabe et al., 2015). Goel (1988), Lemeur & Blad, 

(1975), & Wit (1965) described six leaf angle distribution functions derived from leaf 

normal distributions observed from empirical data. The main functions are spherical, 

uniform, planophile, erectophile, plagiophile, and extremophile (Table 2.1) (Hu et al., 

2018). Each angle can alter the probability estimation that light enters the tree canopy, 

making it a common source of LAI error. For more information about each function’s 

orientation see Hu et al., (2018). The leaf angle distribution function is typically assumed 
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to be spherical (Chianucci & Cutini, 2013) this assumption can only be made if imagery 

is captured at a zenith angle of 57.5 degrees where the LAI estimation is independent of 

the leaf inclination angle or if the leaf angles are estimated as such (J. Zou et al., 2021). 

TLS and ALS data are often captured at multiple view angles so the leaf angle 

distribution should be quantified when estimating LAI. Previous studies have found that 

not correcting for the leaf inclination angle from TLS data led to a 20% - 65% error in 

LAI and leaf area density estimates (Hosoi & Omasa, 2006; Woodgate et al., 2017). 

The leaf projection coefficient, G(θ), is a function of the leaf angle distribution 

and it is necessary for accurately accounting for how variation in leaf angle through the 

canopy affects LAI and leaf area density estimates. The coefficient represents the unit of 

foliage projected onto the plane normal to the direction of the laser beam (Hosoi & 

Omasa, 2006; Wang & Fang, 2020). Oftentimes, researchers estimating LAI will make 

the assumption that leaves are distributed in a spherical manner (G(θ) = 0.5) (Hu et al., 

2014; Ryu et al., 2012). Making this assumption at zenith view angles other than 57.5° 

(X. Zou et al., 2014) rather than characterizing the leaf angle distribution function and 

estimating G(θ) can generate LAI estimation errors (Pisek et al., 2013). The mean 

projection coefficient is estimated by integrating the leaf inclination angle distribution 

function over the leaf inclination angle. Yan et al., (2021) estimated LAI using TLS for 

conifers and found that assuming a spherical distribution function across zenith angles 

generated errors up to 53% if scanning from a nadir view.  
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Table 2.1. Leaf inclination angle distribution functions 

Leaf Inclination Angle 
Distribution Function Name 

Leaf Inclination Angle 
Distribution Function 

Average Leaf Inclination 
Angle (θl) 

Spherical 𝑔𝑔(𝜃𝜃𝑙𝑙) = sin (𝜃𝜃𝑙𝑙) 57.3 

Uniform 𝑔𝑔(𝜃𝜃𝑙𝑙) = 2/𝜋𝜋 45.00 

Planophile 𝑔𝑔(𝜃𝜃𝑙𝑙) = 2 ∙ (1 + cos2𝜃𝜃𝑙𝑙)/ 𝜋𝜋 26.76 

Erectophile 𝑔𝑔(𝜃𝜃𝑙𝑙) = 2 ∙ (1 − cos2𝜃𝜃𝑙𝑙)/ 𝜋𝜋 63.24 

Plagiophile 𝑔𝑔(𝜃𝜃𝑙𝑙) = 2 ∙ (1 − cos4𝜃𝜃𝑙𝑙)/ 𝜋𝜋 45.00 

Extremophile 𝑔𝑔(𝜃𝜃𝑙𝑙) = 2 ∙ (1 + cos4𝜃𝜃𝑙𝑙)/ 𝜋𝜋 45.00 

 

Another commonly addressed form of error is the clumping effect, which alters 

the probability of detecting or not detecting a leaf due to overlap. A canopy has more 

clumped leaves as the clumping index approaches 0. As it approaches 1 the canopy has a 

random distribution of foliage, and when the index is greater than 1 the canopy is 

considered uniform. Clumping can occur at the between-crown and within-crown spatial 

scale, making it spatially complex. Using the Beer-Lambert law to estimate the gap 

fraction requires the assumption that the leaves of the trees are randomly distributed. Tree 

leaves are typically not randomly distributed leading to leaf clumping. There are several 

clumping estimation methods available using gap fraction and gap size distributions. 

Researchers have combined the two methods for estimating clumping at within- and 

between- canopy scales (Chianucci, 2019; Leblanc, 2002) (Equation 2.3).  

 

𝛺𝛺(𝜃𝜃) =  
𝑙𝑙𝑙𝑙[𝐹𝐹𝑚𝑚(0,𝜃𝜃)]
𝑙𝑙𝑙𝑙[𝐹𝐹𝑚𝑚𝑚𝑚(0,𝜃𝜃)] ⋅

[𝐹𝐹𝑚𝑚(0,𝜃𝜃)  −  𝐹𝐹𝑚𝑚𝑚𝑚(0,𝜃𝜃)]
[1 −  𝐹𝐹𝑚𝑚(0,𝜃𝜃)]                                                   (2.3) 
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Where 𝛺𝛺 is the clumping index, 𝜃𝜃 is the zenith angle, 𝐹𝐹𝑚𝑚 is the total gap fraction, 

and 𝐹𝐹𝑚𝑚𝑚𝑚  is the gap fraction after removing large gaps. Clumping can also be corrected for 

using voxelization techniques that standardize the point cloud and reduce point overlap 

(Hosoi & Omasa, 2006). Previous studies have found that clumping causes an average 

LAI underestimation of 14.2% and that clumping indices were lower on average in 

coniferous forests than in broadleaf forests (Zhu et al., 2018). 

Study Site and Research Objectives 

In this study, we evaluated conifer structure using TLS as part of the Department 

of Energy’s project, Spruce and Peatland Responses Under Changing Environments 

(SPRUCE) study which examines the influences of elevated temperature and CO2 

conditions over time (2015 - 2022) in a boreal peatland ecosystem. SPRUCE researchers 

have previously used destructive biophysical linear regressions to derive allometric 

relationships for estimating LAI, but these were pre-treatment and do not account for 

changes in canopy structure or LAI due to warming and CO2 treatments. This problem 

requires a canopy structure estimation with modifiable parameters that maintain moderate 

accuracy against validation. We developed a modified version of the VCP model and 

corrected for wood components, leaf inclination angle, leaf projection coefficient, and 

clumping. This study combines methods from: Almeida et al. (2019); Hosoi & Omasa 

(2006); S. Li et al. (2017); & Yan et al. (2021). SPRUCE is an ideal study location to 

develop, modify, and validate a contact-frequency voxel-based LAI model. 

The research goal in this study was to determine how accurately a VCP-based 

TLS method can estimate the LAI of the two main conifer species at the SPRUCE site, 

Picea mariana (black spruce) and Larix laricina (eastern larch). We expected that this 
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method would maintain an accuracy of at least 90% across input parameters as validated 

by eight individual tree destructively harvested measurements and two plot based 

hemispherical photography measurements. The VCP method addresses four of the major 

challenges associated with predicting LAI using TLS. These challenges are leaf and 

wood separation, clumping, leaf angle distribution, and the leaf projection coefficient. 

The model estimates leaf area density and inclination angle across the canopy vertical 

profile and LAI across the canopy horizontal profile. We present these measurements and 

their relationships through the vertical canopy profile and with each other.  

Methods 

Study Site Description  

The SPRUCE (https://mnspruce.ornl.gov/) whole-ecosystem climate experiment 

is located in the S1 bog of the Marcell Experimental Forest in northern Minnesota, USA 

(N47°30′19″, W93°27′18″) (Figure 2.1A). The bog is an 8.1-hectare acidic ombrotrophic 

bog with an average peat depth of 2.27 m. Ombrotrophic bogs have perched water tables 

(418 m above sea level) and are maintained predominantly through precipitation. Annual 

precipitation is approximately 768 mm and average air temperature from 1961 to 2005 

was 3.3°C. The soils are a low drainage Greenwood series, a Typic Haplohemist 

(http://websoilsurvey.nrcs.usda.gov) with a deep peat age of 5,100 - 11,100 cal BP 

composed of materials deposited by glacial lakes (Sebestyen & Griffiths, 2016). The 

peatland understory is characterized by varieties of ericaceous shrubs, mosses, and 

lichens (Lynch et al., 2002). The primary SPRUCE vegetation of interest in this study are 

the two dominant conifer species, Picea mariana (Mill.) B.S.P. (black spruce) and Larix 

laricina (Du Roi) K. Koch (eastern larch or tamarack). The site is considered highly 
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vulnerable to climate change due to its location near the southern boundary of the boreal 

region. Previous SPRUCE study results have found that the site is a carbon sink, but 

more recent findings reveal that, with warming, it will likely shift to a carbon source 

(Hanson et al., 2020). In this study, we created and validated a model to predict canopy 

structure metrics across 12 plots (Figure 2.1B) at the SPRUCE site.  

 
Figure 2.1A. The SPRUCE study site is in a boreal peatland bog located in northern 

Minnesota, USA. B. Sections of the peatland are partitioned into 12 m diameter, 
open top chambers. The chambers generate different levels of temperature and CO2 

manipulation.  

The spruce and larch trees underwent disturbance events in 1976 that led to 46 

years of regrowth in the S1 bog. The trees were strip cut to study regeneration in the 

spruce trees. Seedlings larger than 1 cm in diameter at 1.3 m above the Sphagnum spp. 

surface are included as trees in this study. Both tree species are often found in low 

nutrient, anoxic, acidic conditions such as the S1 bog. However, the black spruce can be 

found in a variety of soil moisture regimes and elevations. The SPRUCE site has a raised 

water table, but black spruce has also been found in dry substrate of drained peatlands 

(Lynch et al., 2002). The larch tree is most found in peatlands, along a similar geographic 

range to the black spruce. L. laricina grows best in well-drained loamy soils along fresh 

bodies of water, but the tree is scarcely found in areas with these soils because of its 



19 

 

intolerance to shade and the tendency to be outcompeted by other trees (Uchytil, 1991). 

Both the larch and spruce tree’s growth season begins in early to late spring, early May, 

and ends in late autumn, early November.  

Sections of the peatland are under elevated carbon dioxide and temperature 

conditions to generate aboveground and belowground warming effects. The warming 

effects take place using 12.8 m diameter and open-top chambers (Figure 2.1B), with a 

total area of 114.8 m2 per chamber (Hanson et al., 2016). Air warming via blowing 

heated air 1 m above the bog surface and peat warming via heating elements inserted 3 m 

into the peat layer, occur at a range of temperatures: +0°C, +2.25°C, +4.5°C, +6.75°C, 

and +9°C. Peat warming began in June 2014 and air warming began in August 2015 

(Hanson et al., 2016). Throughout chambers, there are two of each temperature treatment. 

One temperature treatment undergoes elevated carbon dioxide by injecting CO2 to a 

concentration of +500 ppm above ambient. The injections began in June 2016 (Hanson et 

al., 2016). Additionally, the study includes two unchambered control plots. 

TLS Data Collection and VCP LAI Estimation Model 

TLS scans of the plots were collected using a Riegl VZ-1000 which has a 1550 

nm laser and an angular resolution of 0.04 degrees. Data collection took place biyearly, 

during spring, the beginning of the growth period, and summer, the maximum growth 

period. Only summer scans were used in this study. From 2015 - 2019, the scans were 

first taken from four points symmetrically placed around plot perimeters (Graham, 2020). 

Following the extensive growth of the trees, from 2020 - 2022 five to eight scan positions 

were placed symmetrically around the plot to reduce occlusion effects (Figure 2.2).  
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Figure 2.2. Nadir view of a chambered plot at the SPRUCE site. Red circles indicate 

TLS scan position locations.  

We estimated the LAI from the plot point clouds using the VCP method initially 

developed by Hosoi & Omasa (2006). Point clouds were preprocessed using a point 

deviation filter and correcting the intensity by the range to obtain reflectance values of 

the points. We used CloudCompare’s Cloth Simulation Filter tool (Zhang et al., 2016) to 

extract the ground points of each point cloud. We removed any remaining non-tree points 

manually. We manually collected 66,456 wood points and 65,964 leaf points to build a 

random forest based on the number of return and intensity value features to separate the 

leaf and wood components of each tree point cloud (Figure 2.3A & B). Its parameters 

included 100 decision trees and no max node depth. We tested the model fit using a ten-

fold cross validation where 90% of the training data was used to classify 10% of the 

remaining data in ten different partitions. The random forest and VCP algorithm work 

with multiple conifer trees and individual conifer trees as validated by destructive and 

DHP-based estimates of LAI.  
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Figure 2.3A.  Spruce conifer branch before wood component removal. B. Spruce 

conifer branch after wood component removal using the random forest model based 
on reflectance and number of returns features.  

We used the Python package Open3D v0.16.1 (Zhou et al., 2018) to voxelize and 

estimate the point cloud’s normal vectors. We visualized the point clouds using Open3D 

and CompuTree (Computree Core Team, 2017). Using 3.25 cm voxels (grid cell volume 

= 0.00003433 m3), we voxelized the tree to normalize the raw point cloud data and 

generate volumetric and area-based data (Figure 2.4A & B).  

 
Figure 2.4A. Full spruce tree voxelized using 3.25 cm voxels. B. Top 0.5 m of a 

spruce tree voxelized using 3.25 cm voxels. Data visualized using CompuTree, 2022. 
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We generated canopy profiles by slicing the voxelized tree point cloud into 0.5 m 

cross sections through the vertical canopy (Figure 2.5).  

 
Figure 2.5. SPRUCE plot horizontally sliced to generate 0.5 m width vertical canopy 

profiles. Color is representative of an individual 0.5 m slice. 

At each half meter slice, we calculated a distribution of leaf inclination angles. 

Using the Open3D algorithm, we estimated the leaf normal vectors through principal axis 

calculation of the adjacent points and the use of a covariance analysis (Figure 2.6), which 

we used to estimate the leaf inclination angles (Equation 2.4) (Yan et al., 2021).  
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Figure 2.6. SPRUCE trees with estimated leaf normal vectors using a principal axis 

and covariance analysis. Colors represent 0.5 m change in tree height.  

𝜃𝜃𝑙𝑙  =  {
180∘− 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛 ⋅ 𝑣𝑣

||𝑛𝑛|| ||𝑣𝑣||     𝑛𝑛 ⋅ 𝑣𝑣 ≤ 0

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛 ⋅ 𝑣𝑣
||𝑛𝑛|| ||𝑣𝑣||                  𝑛𝑛 ⋅ 𝑣𝑣 > 0     

                                                (2.4) 

Where 𝑛𝑛 is the normal vector to the leaf and 𝑣𝑣 is the real vertical direction 

or the zenith laser of the TLS in this study. From the leaf angles (𝜃𝜃𝑙𝑙), we found 

the leaf angle distribution function 𝑔𝑔(𝜃𝜃𝑙𝑙), which is needed to estimate the leaf 

projection function 𝐺𝐺(𝜃𝜃). Both the leaf angle distribution function and the mean 

projection function account for how differences in the viewing angle (laser zenith 

angle) affect the interpretation of leaf angles impact on light transmission in the 

canopy. The leaf angle distribution function is the probability that a leaf normal 

will fall within a unit interval of an inclination angle. We calculated the leaf 

projection function by integrating the leaf angle distribution function over the leaf 

inclination angles (Equation 2.5 & 2.6), (Almeida et al., 2019; Hosoi & Omasa, 

2006; S. Li et al., 2017; Yan et al., 2021).        
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𝐺𝐺(𝜃𝜃) =  � 𝑔𝑔(𝜃𝜃𝑙𝑙)
2𝜋𝜋

0
𝑆𝑆(𝜃𝜃, 𝜃𝜃𝑙𝑙)𝑑𝑑𝜃𝜃𝑙𝑙                                                                       (2.5) 

𝑆𝑆(𝜃𝜃,𝜃𝜃𝑙𝑙)  =  {
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑙𝑙[1+

2(𝑡𝑡𝑡𝑡𝑡𝑡 𝑥𝑥 − 𝑥𝑥)
𝜋𝜋 ],     𝜃𝜃 > 𝜋𝜋2 − 𝜃𝜃𝑙𝑙

 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑙𝑙,                                 𝜃𝜃 ≤ 𝜋𝜋2 − 𝜃𝜃𝑙𝑙                                             (2.6) 

  

𝑥𝑥 =  𝑐𝑐𝑐𝑐𝑐𝑐−1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑙𝑙) 

𝑆𝑆(𝜃𝜃,𝜃𝜃𝑙𝑙) is the average of |𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝐵𝐵����⃗ ,𝑛𝑛𝐿𝐿����⃗ )|, which is the absolute value of the cosine 

of the angle between the laser unit vector and the leaf normal vector (Hosoi & Omasa, 

2006; Yan et al., 2019). The resulting leaf projection function led to the correction factor 

calculation, 𝛼𝛼(𝜃𝜃), ((Equation 2.7), Hosoi & Omasa, 2006; S. Li et al., 2017). The 

correction factor corrects for how the interpretation of leaf angles at different laser zenith 

views affect the LAI estimate. 

𝛼𝛼(𝜃𝜃)  =  
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐺𝐺(𝜃𝜃)                                                                                        (2.7) 

To determine the final contact frequency counts and estimate the leaf area density 

we performed a convex hull using the SciPy spatial package (SciPy v0.14.0) to calculate 

the volumes of voxels that the beam contacted and the voxels that the beam passed 

through, representing a gap. From the convex hull we calculated the number of possible 

voxels that would fill the plot area, 66.44 m2, and subtracted the number of actual voxels 

to find the empty voxels which the beam passed through (Figure 2.7).  
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Figure 2.7. A convex hull found the volume of voxels in the canopy space where a 

laser beam contacted the canopy and where laser beams passed through the canopy 
at each 0.5 m layer (Visualized using SciPy v1.7.3). 

For each canopy 0.5 m horizontal profile, we calculated a leaf area density value 

based on the contact frequencies using equation 2.8 (Almeida et al., 2019; Hosoi & 

Omasa, 2006). LAI is then estimated from the leaf area density as the sum of the leaf area 

densities through the vertical profile (Equation 2.9).  

𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(ℎ,𝛥𝛥𝛥𝛥)  =  𝛼𝛼(𝜃𝜃)
1
𝛥𝛥𝛥𝛥 ⋅ �

𝑛𝑛𝑙𝑙(𝑘𝑘)
𝑛𝑛𝑙𝑙(𝑘𝑘)  +  𝑛𝑛𝑝𝑝(𝑘𝑘) 

𝑚𝑚ℎ+𝛥𝛥𝛥𝛥

𝑘𝑘 = 𝑚𝑚ℎ

                                  (2.8) 

𝐿𝐿𝐿𝐿𝐿𝐿(ℎ) = 𝛼𝛼(𝜃𝜃) ⋅ �
𝑛𝑛𝑙𝑙(𝑘𝑘)

𝑛𝑛𝑙𝑙(𝑘𝑘) +  𝑛𝑛𝑝𝑝(𝑘𝑘)                                     
𝑚𝑚𝐻𝐻𝐻𝐻

𝑘𝑘 = 𝑚𝑚ℎ

                              (2.9) 

Where 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the leaf area density in m2/m3, 𝛼𝛼(𝜃𝜃) is the leaf angle-based 

correction factor, 𝑚𝑚ℎ is a single canopy profile layer, 𝛥𝛥𝛥𝛥 is the thickness of each canopy 

profile in 𝑚𝑚, 𝑛𝑛𝑙𝑙(𝑘𝑘) is the number of laser beams intercepted at a voxel in a canopy layer, 

𝑛𝑛𝑝𝑝(𝑘𝑘) is the number of laser beams passing through a voxel in a canopy layer, and 𝑚𝑚𝐻𝐻𝐻𝐻 

is the treetop height. 

To evaluate the degree of error that is effectively corrected for in the LAI 

prediction, we conducted an error analysis. We determined the degree of LAI estimate 
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error that would result from not correcting for wood components, leaf inclination angle 

distribution, assuming a spherical mean projection coefficient, or clumping by evaluating 

the values as corrections were removed using equation 2.10.  

 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  
𝐿𝐿𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  −  𝐿𝐿𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

𝐿𝐿𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
⋅ 100                                                                (2.10)  

 

Where 𝐿𝐿𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  is the LAI with one of the correction procedures removed from 

the model prediction. 𝐿𝐿𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the corrected LAI.  

Destructive Harvest Collection and LAI Calculation  

Destructive harvesting of larch and spruce trees took place for a set of direct 

measurements of LAI at only one time during the study to minimize impacts to the bog. 

In the summer of 2018, after new foliar cohorts were fully expanded, researchers took 

three to seven TLS scans of four larch trees and four spruce trees outside of designated 

plots, generating four point clouds (n = 8 trees). Registered point clouds were processed 

to remove noise or points with weak returns. Each of these trees were outside of 

experimental plots. The larch tree heights included 2.13 m, 2.84 m, 6.5 m, and 8.95 m. 

The spruce tree heights included 2.49 m, 3.62 m, 5.56 m, and 8.93 m. The destructive 

harvest LAI estimates provided 8 samples for the VCP model validation. 

After collecting the scans of the eight trees outside of the chamber plots, SPRUCE 

researchers used destructive harvesting techniques to collect dry weights for bole 

sections, branches, and needles of the four larch trees and four black spruce trees and 

their fresh foliage surface area. Using the leaf metrics, we calculated the SLA, the ratio of 

fresh foliage surface area to dry foliage mass. The ground area for each tree (i.e., the 
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canopy area projected onto the ground) was calculated as shown in equation 2.11. LAI 

was quantified by multiplying the SLA and the total foliage dry mass of each tree and 

dividing by the sampled ground area (Equation 2.12). 

𝑆𝑆𝑆𝑆𝑆𝑆 =  𝜋𝜋 ×  (
1
2 ×  (𝐶𝐶𝐶𝐶))2                                                                                    (2.11) 

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖  =  (𝑆𝑆𝑆𝑆𝑆𝑆 ×  𝐿𝐿𝐿𝐿) / 𝑆𝑆𝑆𝑆𝑆𝑆                                                                                   (2.12) 

𝑆𝑆𝑆𝑆𝑆𝑆 is the sampled ground area in m2 and 𝐶𝐶𝐶𝐶 is the canopy width in m. 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 is 

the LAI of an individual tree, 𝑆𝑆𝑆𝑆𝑆𝑆 is the specific leaf area in leaf area per unit of dry leaf 

mass (m2/g), 𝐿𝐿𝐿𝐿 is the total foliage dry mass of a tree (g).  

Hemispherical Photography Collection and LAI Estimation  

In August of 2022, we collected six hemispherical photographs per plot (n = 72 

photos) to validate TLS estimates of LAI. Photograph positions were placed 

symmetrically around the perimeter of a SPRUCE plot. The camera was attached to a 1.5 

m monopod with a digital inclinometer and photos were collected at both nadir and 57.5° 

view angles. We recorded the photographs using the Rokinon 8 mm f/2.8 UMC Fisheye 

II Lens for a Sony E Mount. We adjusted the camera to be 1 - 2 steps overexposed 

(Seidel et al., 2012). Challenges with chamber wall removal from the hemispherical 

photographs introduced errors to the LAI estimates. As a result, we only processed and 

estimated the LAI from the unchambered plots, 2 out of 12 plots. These were used as 

additional metrics of model validation.  

We estimated the LAI of the digital hemispherical photographs using the 

HemispheR R package (Chianucci, 2019). After applying a circular mask to the image, 

we selected the blue channel for classification because it has the most contrast between 

sky and leaf pixels (Brusa & Bunker, 2014). A gamma value of 2.2 corrected the gray 
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pixels of the image (Glatthorn & Beckschäfer, 2014) before binarizing it. We used the 

Otsu method to binarize the image. The Otsu algorithm defines the binarization threshold 

by minimizing the intra-class variance, which is the weighted sum of the two classes’ 

variances (Chianucci, 2019). From the binarized image, we calculated the gap fraction 

using equation 2.1. The gap fraction was calculated using a maximum zenith angle of 90 

degrees, lower zenith angle of 0 degrees, upper zenith angle of 70 degrees, 5 zenith rings, 

and 8 azimuth sectors. The final LAI estimate was calculated using the inverted angular 

gap fraction and Miller’s theorem (Miller, 1967) (Equation 2.13). 

𝐿𝐿𝐿𝐿𝐿𝐿 = 2� (−𝑙𝑙𝑙𝑙(𝑃𝑃0𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃)) 
𝜋𝜋
2

0
                                                                   (2.13) 

We estimated two different clumping indices from an ordered weighted average 

gap fraction and calculated the ratio between them to estimate a clumping correction 

factor (Chianucci, 2019) (Equation 2.14)  

𝛺𝛺(𝜃𝜃)𝐿𝐿 =
−∫ 𝑙𝑙𝑙𝑙

𝜋𝜋
2
0 [∑ 𝑤𝑤′𝑖𝑖 𝑛𝑛

𝑖𝑖 = 1 𝑃𝑃𝑖𝑖 ↓ 𝜃𝜃]

−∫ 𝑙𝑙𝑙𝑙
𝜋𝜋
2
0 [∑ 𝑤𝑤′𝑖𝑖𝑛𝑛

𝑖𝑖 = 1  𝑃𝑃𝑖𝑖 ↑ 𝜃𝜃]
                                                                      (2.14) 

𝑤𝑤′𝑖𝑖 = 2(𝑛𝑛 + 1 −𝑖𝑖)
𝑛𝑛(𝑛𝑛+1)

;  𝑤𝑤′𝑖𝑖 = 1
𝑛𝑛
∑ 1

𝑗𝑗
 𝑛𝑛

𝑗𝑗 = 1                                                                            (2.15) 

where 𝑤𝑤′𝑖𝑖 represents the two different weighted vectors (Equation 2.15). The 

workflow provided estimates of Effective Leaf Area Index (eLAI), LAI, a clumping 

correction factor, canopy openness estimate, and the mean leaf tilt angle. 

Results  

VCP Model Validation 

The cross validation for the leaf and wood separation method resulted in a 95% 

accuracy. The number of returns explained 36.1% of the classification and the reflectance 
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values explained 63.9% of the classification. The model had an average overall accuracy 

on test data of 92% and an average F1 score of 87% based on seven manually classified 

trees. We compared our separation method to two other available methods. One was 

based on eigen-features (Krishna Moorthy et al., 2020) and the other was based on 

dimensionality and known as the CANUPO method in CloudCompare v2.12. The 

geometric-based algorithms did not produce the same accuracy for the conifers (see 

Appendix A for leaf and wood model separation accuracies). 

We validated the VCP model using eight trees with destructively harvested-based 

individual LAIs (LAIi) and two DHP-based LAI estimates at the plot scale. A simple 

linear regression analysis showed that the model predicted LAI of the individual trees and 

the tree plots with a coefficient of determination of 0.89 (R2 = 0.89), an RMSE of 0.98, 

and an nRMSE of 0.17 (Table 2.2, Figure 2.8). The lowest nRMSE and highest R2 value 

was found using a voxel size of 3.25 cm (Figure 2.9). Values of nRMSE ranged from 

0.17 - 0.23, and R2 values ranged from 0.81 - 0.89. TLS-based LAIi measurements 

overestimated values for five of the eight destructively harvested trees. The remaining 

three tree LAIis were underestimated. Compared to DHP LAI estimates, TLS 

underestimated the LAI of one of the two plots.  
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Table 2.2. TLS-based estimates of LAI at the individual tree and plot level, 
destructive harvest-based LAIi at the individual tree level, DHP-based LAI at the 
plot level.  

Plot or 
Individual Tree 

Species Max Height (m) TLS-based LAIi
 

or LAI 
Destructive- based 
LAIi or DHP-based 
LAI 

Tree 1 spruce 2.49 2.57 1.19 

Tree 2 spruce 3.62 2.92 3.65 

Tree 3 spruce 6.5 6.82 7.38 

Tree 4 spruce 8.93 6.93 6.38 

Tree 1 larch 2.13 1.34 0.75 

Tree 2 larch 2.84 2.07 0.97 

Tree 3 larch 5.56 4.86 3.44 

Tree 4 larch 8.95 6.98 8.58 

Plot 7 all 6.72 4.87 4.87 

Plot 21 all 7.73 4.55 5.26 
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Figure 2.8. Validation of the TLS-based LAIi and LAI against the destructively 

harvested LAIi and DHP LAI (n = 10).  

 

 
Figure 2.9. R2 and nRMSE values of the validated LAI estimates calculated across 

different voxel sizes.  
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Destructively Harvested Leaf Area Density  

We estimated leaf area densities using TLS data for each of the individual trees 

used for validation. Distributions of individual leaf area density through the vertical 

canopy increased in the center and upper portion of the canopy for the largest spruce tree. 

Similarly, individual tree leaf area density increased in the center of the canopy for the 

largest larch tree. The average leaf density of the four individual spruce trees was 0.49 

m2/m3. The average leaf density of the four individual larch trees was 0.40 m2/m3 (see 

Appendix A for individual tree leaf area density figures). 

Destructively Harvested Leaf Inclination Angles  

The two main leaf angle distribution functions for the larch and spruce trees in the 

study were best represented by the spherical (Equation 2.16) and erectophile (Equation 

2.17) functions.  

𝑔𝑔(𝜃𝜃𝑙𝑙) =  𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 𝑙𝑙                                                                                                             (2.16) 

𝑔𝑔(𝜃𝜃𝑙𝑙) =  2(1 −  𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑙𝑙) / 𝜋𝜋                                                                                    (2.17)       

Where 𝑔𝑔(𝜃𝜃𝑙𝑙) is the leaf distribution function and 𝜃𝜃𝑙𝑙 is the leaf inclination angle. 

Neither species of tree only represented one distribution or the other across all eight 

individuals. Individual spruce trees tended to have vertically distributed leaves, on 

average following the erectophile distribution. The larch trees had a more normal 

distribution of leaf angles, representing a spherical distribution, which is more 

symmetrical and planar. We evaluated the average leaf angle throughout the canopy 

height of the largest larch and spruce tree. Generally, leaf angles were more spherical in 

the upper canopy and more vertical in lower portions of the canopy of both trees (see 

Appendix A for individual tree leaf angle figures).  
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Leaf Angle and Leaf Area Density  

 To determine if there was a relationship between leaf inclination angle and 

leaf density, we compared the two metrics through the vertical canopy. We found that as 

leaf area density increased in the canopy of each of the eight trees, leaves tended to be 

more symmetrically distributed. When leaf area density decreased, leaves shifted to more 

vertical distributions (see Appendix A for individual tree leaf angle and leaf area density 

figures).  

Leaf Area Index Correction Factor Error Analysis  

 We conducted a percent error analysis to determine the amount of LAI 

error each correction factor accounted for. Inputting point clouds with wood components 

into the VCP model resulted in an average 2.8% overestimation of LAI. When we 

removed the leaf inclination angle distribution function estimation, the LAI was 

overestimated on average by 66.2%. Assuming a spherical distribution and setting the 

projection coefficient value to 0.5 (𝐺𝐺(𝜃𝜃)  =  0.5), generated an average 14.2% LAI 

overestimation. Removing the needle clumping correction workflow resulted in an 

average 6.5% LAI underestimation.  

Table 2.3. Correction factor error analysis. 

Correction 
Factor Removed 

Wood 
Component 
Separation 

Leaf Inclination 
Angle 

Projection 
Coefficient 
Calculation 

Clumping 

Mean Error 2.8% 66.2% 14.2% -6.5% 
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Discussion  

 In this study, we asked, how accurately can we predict the LAI of the 

spruce and larch trees using TLS data. We expected to achieve a 90% accuracy using a 

contact frequency-based method and corrections for wood components, leaf inclination 

angle distribution, leaf projection coefficient calculation, and clumping. The use of the 

modified VCP model method, initially proposed by Hosoi & Omasa (2006) enabled us to 

predict the LAI of 8 peatland conifers and 2 peatland conifer plots. Using Yan et al., 

(2021)’s leaf inclination angle estimation method for conifers allowed for the correction 

of the projection coefficient and provided additional vertical information about the larch 

and spruce canopies. The model predicted LAI at the individual tree and conifer plot 

scale with a R2 = 0.89, RMSE = 0.98, and nRMSE = 0.17 as validated by destructively 

harvested and DHP estimates. The model maintained moderate prediction accuracy (R2 > 

0.80) across different voxel sizes. Our error analysis showed that leaf inclination angle 

distribution affected the LAI correction the most, generating a 66.2% LAI overestimation 

when removed from the model. We found that separation of the wood component only 

corrected for 2.8% of the LAI estimation in comparison. Previous studies found that 

wood components accounted for 17.1% of overestimation error, but this included 

broadleaf trees which tend to have a higher woody area than conifer trees (Zhu et al., 

2018). Taken together, results suggest that woody components contribute to less error in 

conifers. Other types of error that affect remote sensing derived LAI estimates such as 

but not limited to, voxel size, occlusion, saturation, and topography can be found in (L. 

Tian et al., 2021; Wang & Fang, 2020; Yan et al., 2019). 
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 Recent studies estimating LAI using TLS and a version of the voxel 

contact frequency model have found the model to be highly reliable for predicting 

individual magnolia tree LAI with accuracies being 99.9% and 90.7% on two different 

magnolia species (S. Li et al., 2017). Oshio et al. (2015) estimated leaf area density of 

broadleaf trees using voxel contact frequency methods with an accuracy of 95%. Each of 

these studies and others (Béland et al., 2014; Grau et al., 2017) found LAI, PAI, and 

clumping prediction accuracy was highly dependent on the specified voxel size and voxel 

processing. Our results showed that in the larch and spruce trees, with all correction 

factors applied, moderate LAI prediction accuracy can be achieved using a wide range of 

voxel sizes. Nguyen et al. (2022) found voxel effects on plant area density accuracy 

measurements were dependent upon the size of the wood and foliage present. Conifer 

trees with smaller branches and foliage were less susceptible to voxel size discrepancies. 

The wide range of applicable voxel sizes provides confidence that the LAI of the 

SPRUCE conifer trees can be estimated well across trees under treatment conditions. 

Based on previous studies, the chosen voxel size and its relationship to the estimation 

metric can vary across study systems (Béland & Kobayashi, 2021). Therefore, it is 

essential to perform one's own voxel tests. Additional options include using information 

about leaf size (Béland et al., 2014) or the range and scan resolution (S. Li et al., 2017) to 

make a voxel size selection. 

  To our knowledge, the full workflow of the modified VCP method in this 

study has not been tested on the eastern larch and black spruce species at the individual 

and plot level scale. Researchers have tested versions of this method on broadleaf species 

(Béland & Kobayashi, 2021; Hosoi et al., 2013; Itakura & Hosoi, 2019; Y. Li et al., 2017; 
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Oshio et al., 2015; Rouzbeh Kargar et al., 2019; Su et al., 2018), individual conifers (Lin 

& West, 2016), to estimate eLAI (Flynn et al., 2022), ALS data (Almeida et al., 2019), or 

as applied single workflow sections to conifers (S. Li et al., 2017). Here, we provided 

evidence that our version of the full workflow of the VCP method is applicable to conifer 

trees at the plot and individual tree spatial scale.  

Our results support previous black spruce LAI and leaf area density research. 

Researchers have previously found that black spruce LAI ranges from 0.178 - 8.97 and an 

average of 3.9 based on 71 studies in the Global LAI Database from the Oak Ridge 

National Laboratory (ORNL) (IIO & ITO, 2014) and Angstmann et al., (2012). Based on 

10 studies from the ORNL LAI database, eastern larch LAI ranged from 0.68 - 3.29, with 

an average of 1.9. Our LAI estimates are within the presented ranges for previous black 

spruce studies. There are no current studies that measure leaf area density in the black 

spruce or the eastern larch, but Sterba et al. (2019) measured leaf area density in 74 Picea 

abies (Norway spruce) and 120 Larix decidua (European larch) and found that their leaf 

area densities ranged from 0 m2/m3 - 1.4 m2/m3 and 0 m2/m3 - 1.3 m2/m3 respectively. 

Our leaf area density estimate ranges for spruce were similar ranging from 0.06 m2/m3 - 

1.5 m2/m3.  

We extend previously recorded eastern larch canopy datasets that have been 

developed based on trees in different environments, using different species of larch, and 

with time-consuming manual methods. Eastern larch LAI studies are more limited than 

black spruce studies, resulting in less estimations of eastern larches as large as the ones in 

the current study. The current eastern larch LAI database is based on eastern larch trees 

found mainly in fen habitats (IIO & ITO, 2014), which differ from the SPRUCE bog 
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environment. Leaf area density estimates also differed for larch trees in our study, 0.11 

m2/m3 - 0.67 m2/m3. Larch trees were considered a dominant species in some mixed plots 

in Sterba et al. (2019) while in our study the black spruce is exceedingly dominant, 

potentially leading to lower leaf area densities than theirs. We also examined a different 

species which affects leaf area density values. Yan et al. (2021) estimated leaf inclination 

angle distributions of unspecified species from the larch and spruce genera. They found 

that 3 spruce trees had a range of 33.7° - 47.56° and 4 larch trees had a range of 31.4° - 

45.6°. The researchers were only able to measure portions of the tree’s needles due to 

using manual measurements and comparing them with subsequent 3D models. In our 

validation study we attempted to estimate each individual leaf angle throughout 8 trees 

and 2 plots of trees. The differing needle analysis coverage and unknown species could 

lead to this inclination angle discrepancy. However, their findings support our findings 

that spruce and larch trees tend to, generally, have similar leaf inclination angle 

distributions. Additionally, it is well documented that leaf inclination angle is affected by 

location (S. Li et al., 2023), further explaining the discrepancy between our findings. 

Our main finding indicates that the version of the VCP we presented has 

modifiable parameters that are robust to validation metrics and can predict canopy 

structural parameters with moderate accuracy at different spatial scales. This canopy 

structure evaluation method is highly suitable for analyzing canopy changes over time 

under different environmental conditions, such as elevated CO2 and elevated temperature 

levels since it holds moderate prediction accuracy across different input parameters. The 

VCP model can provide measures of both 3D vertical and 2D horizontal canopy 

parameters, which are useful for constraining carbon emission predictions from climate 
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models such as the SPRUCE site’s modified version of the Energy Exascale Earth 

System Model’s land component (ELM). Peatlands are underrepresented in many land 

surface models, generating uncertainty in global climate predictions (H. Tian et al., 

2015). The SPRUCE site’s version, ELM_SPRUCE, was developed to improve peatland 

representation in ELM.  

 Although our data indicates that the model consistently predicts LAI with 

moderate accuracy there are limitations in this study that should be addressed. The small 

validation sample size (n = 10) is a limiting factor in this study. However, the range of 

validation sample sizes across LAI models is broad. S. Li et al. (2017)’s model validation 

study consists of only 2 magnolia trees, each a different species. Yan et al. (2021)’s leaf 

angle validation study consisted of four larch and three spruce trees. While other studies 

have used around 30 measurements for validation (Indirabai et al., 2020). In a future 

study, we propose updating the current VCP model with at least four more larch and four 

more spruce destructively harvested trees to build a validation dataset. We aimed to limit 

destruction to the bog as much as possible, leading to more emphasis on the 

nondestructive method. Leaf inclination angles and leaf density values were also not 

validated using manual methods, but they are each directly related to the LAI estimation, 

which was validated. Making broad conclusions about spruce and larch canopy structure 

at this point is not possible due to the sample size of the dataset, but the dataset is useful 

in that it offers a broad larch and spruce size dataset. The general contact-frequency 

method has been applicable to other environments, but this specific modified model is not 

necessarily applicable to other species of trees. However, the code is available at 

github.com/angelaseibert/CanopyStructureBCAL and the dataset is available upon 

https://github.com/angelaseibert/CanopyStructureBCAL
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request. We propose that the model could be tested on different study sites. Future studies 

using the TLS VCP method should be applied to larger scale sample sites monitoring the 

effects of elevated temperature and CO2 conditions on foliage over time. Additionally, we 

propose using the VCP method to quantitatively assess the effects of fungal diseases that 

cause foliage damage over time, such as Anthracnose.  

Conclusion 

 As average temperatures and CO2 levels rise, we must validate methods to 

monitor the vegetation that affects the terrestrial carbon sink storage capacity of 

ecosystems like peatland bogs. Using TLS and a voxel-based contact frequency model, 

this study established that we can indirectly and accurately estimate LAI across a series 

of modified parameters and, importantly, maintain that accuracy. However, it should be 

noted that the validation sample size in this study is small, but it is of diversely sized trees 

and applies two different methods of LAI estimation, destructive harvest and DHP. If 

future studies were to use this model, they would require an additional canopy structure 

validation dataset. We propose future studies involving broader model testing, integrating 

novel clumping methods available to further constrain the model, and manually 

measuring leaf area densities for further validation.  
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CHAPTER THREE: USING TERRESTRIAL LASER SCANNING TO MONITOR 

VERTICAL AND HORIZONTAL PEATLAND CONIFER CANOPY PROFILES 

ACROSS TIME UNDER A CLIMATE MANIPULATION 

Introduction  

Temporal changes in vegetation structure impact ecosystem function by altering 

processes including evapotranspiration (Giuliani et al., 2013), photosynthesis (Laine et 

al., 2016), soil and vegetation respiration (Gonzalez-Meler et al., 2004), and 

decomposition rates (de Godoy Fernandes et al., 2021). Each of these processes have 

subsequent impacts on carbon storage capacity (Dusenge et al., 2019; Scott et al., 2006). 

Canopy structure specifically has been shown to alter carbon sequestration through its 

relationship with these processes (Dechant et al., 2020; Hickey et al., 2022; Ringgaard et 

al., 2014; Wallace et al., 2018). Canopy structure datasets from different ecosystems are 

often integrated into larger climate models to constrain uncertainties about potential 

carbon emissions as the Earth’s average temperature rises and carbon dioxide (CO2) 

levels increase (Norby et al., 2022). Evaluating canopy structure changes in forested 

northern peatland ecosystems, a major terrestrial carbon sink, under controlled elevated 

temperature and CO2 conditions may help resolve what elements of the canopy change 

over time under these treatments.  

Northern Peatlands and Temporal Dynamics  

Northern peatlands, a terrestrial carbon sink storing an estimated 415 ± 150 Gt of 

carbon Beaulne et al. (2021), are underrepresented in climate models (H. Tian et al., 

2015) even though they are warming at twice the rate as the global terrestrial ecosystem 

average (Holmgren et al., 2015). With average rising temperatures, northern peatlands are 
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currently at risk of shifting from carbon sinks to carbon sources based on projected 

warming levels (Hugelius et al., 2020). However, since northern peatlands are 

underrepresented in climate models there are still uncertainties about their current carbon 

storage capacity and the potential degree of emissions. Many researchers are working to 

improve representations of boreal peatlands by providing refined empirical datasets of 

permafrost processes (Hugelius et al., 2020), microforms (Graham et al., 2022), microbial 

processes (Carrell et al., 2022), and root biomass (Malhotra et al., 2020). Canopy 

structure datasets are also important for better quantifying peatland carbon flux (Wedeux 

& Coomes, 2015). Datasets should be generated for individual peatlands to appropriately 

minimize uncertainties at the global scale. Forested peatlands are highly affected by 

canopy structure, making a thorough analysis of canopy structure in boreal forested 

peatlands necessary for constraining uncertainties in carbon sequestration.  

Leaf Area Index Temporal Dynamics  

Globally, increased LAI, the total projected leaf area per unit ground area 

(m2/m2), has contributed to a 12.4% increase in the cumulative global terrestrial carbon 

sink since 1981 (Chen et al., 2019). It is necessary, however, to evaluate LAI at an 

ecosystem level to refine these estimates and account for species-level environmental 

response differences. Temporal and spatial changes in tree LAI have been found in some 

ecosystems under elevated CO2 and temperature conditions but are undetectable in 

others. A catchment level study in Iran revealed that MODIS-derived tree LAI (500 m 

spatial resolution) is projected to increase by 2.2 - 3.1% under warmer temperatures. This 

study was limited because they could not evaluate what species within the catchment 

would be most impacted and there is a high degree of uncertainty associated with MODIS 
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LAI estimates (Ramezani et al., 2020). At the species level, previous research found a 

monoculture of sweetgum trees under elevated CO2 conditions demonstrated little change 

in LAI (Norby et al., 2022). They proposed investigating whether similar results would 

arise in a more heterogeneous system. Global model projections of LAI from the most 

recently developed earth system models vary greatly, further underscoring the necessity 

of broadening LAI datasets with fine scale measurements (Mahowald et al., 2016). 

Leaf Area Density Temporal Dynamics 

 Leaf area density is a vertically comprehensive canopy metric that 

characterizes radiation balance with the atmosphere and the canopy layers (Lalic & 

Mihailovic, 2004). It is defined as the total one-sided leaf area per unit canopy layer 

volume (Hosoi & Omasa, n.d.). Oftentimes, canopy structure is measured only using the 

two-dimensional metric, LAI. Limiting canopy structural analyses to LAI estimations 

does not account for the distribution of leaves throughout the vertical canopy. Monitoring 

leaf area density over time can help better evaluate physiological processes like 

respiration and radiative transfer. Time series analyses of leaf area density have enabled 

researchers to effectively monitor the effects of storms and pruning practices on 

agricultural trees (D. Wu et al., 2018). Leppä et al. (2020) showed the utility of leaf area 

density as a monitoring metric for peatland fens pre and post tree harvest, but there are no 

current studies where elevated CO2 and temperature effects on leaf area density are 

evaluated over time and space for groups of peatland trees. It is well-documented that 

elevated CO2 levels tend to increase leaf thickness and decrease leaf stomatal density 

(Luomala et al., 2005), but understanding where in the canopy leaf distribution is 

changing would provide a novel connection between tree structure and function. 
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Leaf Inclination Angles Temporal Dynamics  

An additional metric that enhances comprehensive understanding of vertical 

profile tree canopy structure is the leaf inclination angle. The leaf inclination angle is 

calculated as the angle between the leaf normal and the zenith angle (Y. Li et al., 2018; 

Yan et al., 2021). Leaf inclination angles affect rainfall interception (Holder et al., 2020), 

light distribution in the canopy (Itakura & Hosoi, 2019), and photosynthetic efficiency 

(Mantilla-Perez & Salas Fernandez, 2017). Determining how leaf angles change over 

time and through the canopy can elucidate information about canopy understory effects, 

tree species niche dynamics, and responses to variable environmental conditions. Shade-

tolerant conifers, such as those in the Picea genus, a tree genus commonly found in 

peatlands, have higher leaf and branch plasticity, relative to other conifer species, in 

response to changing environmental conditions (Niinemets, 2010). They may be more apt 

to shifting their leaf angles under altered environmental conditions to maximize or reduce 

carbon gain based on current resource conditions (Burgess et al., 2017; Long et al., 

2006). Conifers are some of the most abundant trees in boreal ecosystems. Boreal 

peatland ecosystems are warming faster than peatlands in other regions of the planet  

(Ruiz-Pérez & Vico, 2020), emphasizing the need to evaluate conifer needle trait changes 

over time and through the vertical canopy profile.  

Tree Characteristics and Dynamics 

Generating datasets of descriptive canopy structure metrics for conifers 

commonly found in boreal peatlands will support better boreal peatland dynamic’s 

understanding. Picea mariana (black spruce) and Larix laricina (eastern larch), trees 

well-adapted to grow in the low nutrient, acidic boreal peatland bog environments, each 
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have defined characteristics and some known temporal dynamics that suggest their 

differing niches may result in contrasting responses to changing environmental 

conditions. Peatland spruce and larch tree dominant overstory is generally associated with 

Sphagnum spp., sparse understories, and peatland areas with lower drainage. Previous 

studies have found that black spruce abundance decreases in peatland regions with higher 

water temperatures and flooding and eastern larch abundance decreases in regions with 

greater canopy closure (Evans et al., 2016; Islam et al., 2003), which emphasizes 

differing niches between species. The trees have also exhibited differing responses to 

seasonal changes and drying. The larch typically has a longer period of maximum gross 

photosynthetic rate toward the end of the growing season, and they have greater fine root 

growth under drying conditions (Jensen et al., 2019; Malhotra et al., 2020). Although the 

spruce and larch trees have similar geographic ranges, they have previously demonstrated 

differing responses to environmental conditions, which suggests the trees may have 

different LAI, leaf area density, and leaf angle responses to warming and elevated CO2.  

Spruce and Peatland Responses Under Changing Environments & ELM-SPRUCE 

 Larger climate model parameters can constrain uncertainty from the use of 

fine-scale temporal empirical analyses. Researchers working on the Spruce and Peatland 

Responses Under Changing Environments study (SPRUCE) created a modified version 

of the Energy Exascale Earth System Model (E3SM) to represent the forested boreal 

peatlands, referred to as ELM-SPRUCE. SPRUCE researchers have collected extensive 

data from the S1 Bog located in the Marcell Experimental Forest, where a forested boreal 

bog undergoes temperature and CO2 manipulations to train ELM-SPRUCE. Current 

research at the SPRUCE site has found increased labile carbon outputs and methane 
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emissions with elevated temperature conditions (R. M. Wilson et al., 2021). This suggests 

that peatlands under warming will trend toward increasing vascular plant cover such as 

spruce and larch trees, and there is a need to broadly characterize canopy structure. 

Currently, the ELM-SPRUCE model predicts LAI of the main conifer trees, the eastern 

larch and black spruce, using multiple parameters of vegetation productivity. Some of 

these parameters are: specific leaf area, fraction of leaf N in RuBisCO (flnr), leaf carbon 

to nitrogen ratio, stem to leaf ratio, and fine root to leaf ratio (Shi et al., 2020a). However, 

the model requires empirical data to constrain current model uncertainties.  

Terrestrial Laser Scanning 

Collecting a comprehensive temporal and fine scale spatial dataset of canopy 

structure can be challenging using traditional methods of canopy evaluation. TLS is 

capable of quantifying vertical and horizontal canopy structure over time at a fine scale. 

Previously, SPRUCE researchers used other methods of canopy structure assessment to 

develop allometric relationships between canopy and tree structural measurements 

including tree basal area and height (Griffiths et al., 2017). However, more recent work 

has revealed losses in foliage, especially from the lower branches of trees under SPRUCE 

treatments, causing the distribution of the canopy to change. Additionally, a freeze event 

caused losses of foliage and tree top dieback in plots. The changes in canopy prevent the 

use of the previous allometric relationships as they will no longer hold or work as 

predictors. This issue requires the use of an indirect canopy analysis method that is 

independent of allometric relationships to measure the trees at SPRUCE.  
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Research Objectives  

 Further research is needed to quantify boreal canopy traits over time at a 

species-level and cumulative stand scale. The research goal of this study was to use TLS 

to apply a voxel-based contact frequency (VCP) model to quantify conifer LAI, leaf area 

density, and leaf inclination angle distribution in 12 SPRUCE plots under elevated and 

ambient CO2 and temperature conditions from August 2015 - August 2022. Specifically, 

we asked, how are the spruce and larch tree canopy structures within 12 SPRUCE plots 

changing from 2015 - 2022? Under elevated CO2 and temperature, we expected LAI to 

significantly increase, leaf area density to decrease in lower canopies, and leaf inclination 

angles to become more vertical. At the species level, we expected the spruce and larch 

trees would respond with opposing trends for each metric under the same treatment. This 

study will extend previous work evaluating trends in canopy structure over time and 

reveal the capacity for species to respond to an altered climate over time.  

Methods 

Study Site 

 The SPRUCE experiment takes place in the boreal forested S1 bog 

Marcell Experimental Forest in Northern Minnesota, USA (N47°30′19″, W93°27′18″). 

The acidic, ombrotrophic bog is 8.1 ha with an average peat depth of 2.27 m and a 

perched water table, 418 m above sea level. From 1961 - 2005 the mean annual air 

temperature was 3.3°C and mean annual precipitation was 768 mm (Sebestyen, 2011). 

Average temperature has risen by approximately 1.76° C over the last 40 years. The 

Greenwood series soil is low drainage with a deep peat age of 5,100 - 11,100 (Sebestyen 

& Griffiths, 2016) with average peat depths at 2 - 3 m, down to the Wisconsin glacial-age 
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lakebed (Hanson et al., 2009). The dominant vegetation includes the two dominant 

conifers, ericaceous shrubs, herbaceous species, and a bryophyte layer consisting mostly 

of Sphagnum spp. Mosses. For belowground peat profile and geochemistry see Tfaily et 

al. (2014). 

 The dominant conifers within the peatland are the Picea mariana (Mill.) 

B.S.P. (black spruce) and Larix laricina (Du Roi) K. Koch (eastern larch or tamarack). 

The larch and spruce trees were harvested in strip cuts in 1969 and 1974 to test the effects 

of seeding on the spruce’s regeneration. Natural vegetative processes or seeding events 

followed to generate regeneration post-strip cuts. Plot saplings greater than 1 cm in 

diameter and 1.3 m above the Sphagnum surface are considered trees in this study. Both 

the larch and spruce tree’s growth season begins in early to late spring, May, and ends in 

late autumn, or November. The SPRUCE plots contain a range of 10 larger trees in plot 

10 to a maximum of 27 trees in plot 20 for a mean number of trees per plot of between 18 

and 19 whole trees. Currently, canopy heights are 8 - 9 m tall, with some treetops being 

cut during 2021 as they outgrew the chamber walls. In 2016, the full range of diameter at 

breast height values were 1.2 to 11.1 cm. On average, there are 10 spruce trees (range: 3 - 

17 trees) per plot and 3 larch trees (range: 1 - 5 trees) per plot. 

 Sections of the peatland are under elevated carbon dioxide and 

temperature conditions resulting in aboveground and belowground warming effects 

(Figure 3.1, Hanson et al., 2016). The warming effects take place using 12.8 m diameter 

and 7 m tall open-top chambers, with a total area of 114.8 m2 per chamber. Air warming 

via blowing heated air 1 m above the bog surface and peat warming via heating elements 

inserted 3 m into the peat layer, occur at a range of temperatures: +0°C, +2.25°C, +4.5°C, 
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+6.75°C, and +9°C. Peat warming began in June 2014 and air warming began in August 

2015 (Hanson et al., 2016). Throughout chambers, there are two of each temperature 

treatment. One temperature treatment undergoes elevated carbon dioxide by injecting 

CO2 to a concentration of +500 ppm above ambient. The injections began in June 2016. 

Additionally, the study includes two unchambered control plots. The present study 

focuses on tree structural trait responses to elevated temperatures, elevated CO2 (eCO2), 

ambient CO2 (aCO2), and ambient temperature from 2015 to 2022. Four of the plots are 

under eCO2 and elevated temperatures, plots 4, 10, 11, and 16. One plot is under eCO2 

and blowers with unheated air only, plot 19. Four plots are under aCO2 and elevated 

temperatures, plots 8, 13, 17, and 20. One plot is under aCO2 and blowers with unheated 

air only, plot 6. Two plots are controls with no chamber, no eCO2, and no blowers plots 7 

and 21. 
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Figure 3.1. Aerial view of the SPRUCE plots with their respective treatment 

conditions (Adapted from Hanson et al., 2016). 

TLS Data Collection   

 We used a Riegl VZ-1000 TLS with a 1550 nm laser and an angular 

resolution of 0.04 degrees to collect scans of the 12 SPRUCE plots. Scans were taken 

biyearly from 2015 - 2022 during the beginning of the growth period and the maximum 

growth period. Only scans taken during the maximum growth period were used for the 

analyses in this study. Around each plot, we symmetrically placed 5 - 8 scan positions 

depending on the necessary amount needed to reduce occlusion effects (Figure 3.2). 

Scans were coregistered to an error less than 1 cm using RiSCAN PRO. We applied a 

point deviation filter to reduce poor returns and corrected the intensity by the range to 

obtain the point reflectance values. Georegistration of plots was performed in 

CloudCompare v2.12.  
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Figure 3.2. Nadir view of a chambered plot at the SPRUCE site. Red circles indicate 

TLS scan position locations.  

VCP Model Canopy Structure Estimation 

 After obtaining 12 SPRUCE plot point clouds each year from 2015 - 2022 

we generated plot scale canopy height models and applied them to the modified VCP 

model (Almeida et al., 2019; Hosoi & Omasa, 2006; S. Li et al., 2017; Yan et al., 2021) 

based on J. W. Wilson, (1960)’s contact frequency theory. Ground points were removed 

using the Cloth Simulation Filter (CSF) tool (Zhang et al., 2016) in CloudCompare. The 

tool extracts ground points from discrete lidar point clouds. We removed any remaining 

nontree points manually. To separate the leaf and wood components in the plots we 

applied a random forest that uses number of returns and reflectance values as features for 

component separation. The model produces a leaf-only cloud of all the trees in the plot 

(Figure 3.3 & 3.4 A&B). 
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Figure 3.3. SPRUCE plot 16, 2022 with classified wood components. 

 
Figure 3.4A. SPRUCE plot 16, 2022 treetops before wood component removal. B. 

SPRUCE plot 16, 2022 treetops after wood component removal.   

 Following the removal of wood, the trees within each of the plots for each 

year were manually separated into larch and spruce species (Figure 3.5A, B, & C). This 

separation allowed us to analyze how each species’ canopy was changing over time at the 

plot scale. Each leaf point cloud was then run through the VCP model. 288 total plots 

were applied to the model. The model performed 10 iterations to predict leaf canopy 

metrics and quantify uncertainty in the LAI estimation for all plots. Approximately 1,616 
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tree canopies, 1,184 spruce and 432 larch, were iteratively evaluated at the plot scale for 

all species and at the plot scale where species were separated.  

 
Figure 3.5A. SPRUCE plot 17, 2022 from above, all tree species together. B. Black 
spruce trees separated at the plot scale. C. Larch trees separated at the plot scale.  

The VCP model is based on the contact frequency theory for estimating LAI (J. 

W. Wilson, 1960). The model estimates the probability that a laser beam will hit a voxel 

or pass through a voxel, resulting in a vertical estimate of leaf area density that can be 

summed to calculate the LAI of the plot (Almeida et al., 2019) (Equations 3.1 & 3.2). 

The workflow begins by applying a volumetric pixel grid to the tree to generate a 

standardized point cloud with which volume and area can be estimated. In this study, we 

used 3.25 cm voxels based on iterative voxel tests during model development. For each 

group of 3.25 cm voxels in a 0.5 m layer of the tree canopy we calculated the leaf 



53 

 

inclination angle using the leaf normal and the zenith angle of the TLS beam. These leaf 

inclination angles were used to calculate the mean projection coefficient and the 

correction factor (Equation 3.3), which is based on the leaf angle distribution at the TLS 

zenith angles. A convex hull was used to calculate the total possible number of voxels 

that would occupy the plot area, 66.44 m2. This number was subtracted from the actual 

number of voxels to calculate the voxels where a laser beam passed through (𝑛𝑛𝑝𝑝(𝑘𝑘)). 

This calculation provided the contact frequencies, or the leaf area densities at each 0.5 m 

portion of the canopy. These densities were summed to find the cumulative LAI.  

𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(ℎ,𝛥𝛥𝛥𝛥) =  𝛼𝛼(𝜃𝜃)
1
𝛥𝛥𝛥𝛥 ⋅ �

𝑛𝑛𝑙𝑙(𝑘𝑘)
𝑛𝑛𝑙𝑙(𝑘𝑘) + 𝑛𝑛𝑝𝑝(𝑘𝑘)                   

𝑚𝑚ℎ+𝛥𝛥𝛥𝛥

𝑘𝑘 = 𝑚𝑚ℎ

                  (3.1) 

Where 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 is the leaf area density in m2/m3, 𝛼𝛼(𝜃𝜃) is the leaf angle-based 

correction factor, 𝑚𝑚ℎ is a single canopy profile layer, 𝛥𝛥𝛥𝛥 is the thickness of each canopy 

profile in m, 𝑛𝑛𝑙𝑙(𝑘𝑘) is the number of laser beams intercepted at a voxel in a canopy layer, 

and 𝑛𝑛𝑝𝑝(𝑘𝑘) is the number of laser beams passing through a voxel in a canopy layer, and 

𝑚𝑚𝐻𝐻𝐻𝐻 is the treetop height.  

𝐿𝐿𝐿𝐿𝐿𝐿(ℎ)  = 𝛼𝛼(𝜃𝜃) ⋅ �
𝑛𝑛𝑙𝑙(𝑘𝑘)

𝑛𝑛𝑙𝑙(𝑘𝑘)  + 𝑛𝑛𝑝𝑝(𝑘𝑘)  
𝑚𝑚𝐻𝐻𝐻𝐻

𝑘𝑘 = 𝑚𝑚ℎ

                                                             (3.2) 

𝛼𝛼(𝜃𝜃)  =  
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐺𝐺(𝜃𝜃)                                                                                                                 (3.3) 

Where 𝜃𝜃 is the laser zenith angle and 𝐺𝐺 is the mean projection coefficient (Hosoi 

& Omasa, 2006).  

Statistical Analyses  
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After quantifying the canopy structural measurements for each of these SPRUCE 

plots, we performed statistical analyses to identify monotonic trends through time in each 

metric between species and treatments. We grouped plots including both species into 3 

categories: elevated CO2 increased temperature & blowers, ambient CO2 increased 

temperature & blowers, and control plots. The same categories were generated for plots 

with only spruce species and plots with only larch species. Data was normalized using the 

min-max method to better visualize trends. Additionally, we used normalized data to 

perform least squares regressions across the experimental temperature gradient and reveal 

any linear trends between the metrics and temperature. 

 Each category of non-normalized LAI values was analyzed through time 

using Mann-Kendall tests. The Mann-Kendall tests applied a pre-whitening procedure to 

account for the presence of serial-correlation in the dataset. This test identified if there 

was an increasing or decreasing trend in the data and if it was statistically significant. To 

analyze the temperature gradient, we performed linear regressions between temperature 

and LAI, grouping and normalizing LAI by carbon dioxide treatment. 

 Leaf area density measurements were analyzed through the vertical 

canopy and over time for each category of plots. The plot canopies were broken into three 

categories: upper (≥ 6 m), middle (< 6 m & ≥ 3 m), and lower (< 3 m). We applied the 

same Mann-Kendall tests to reveal any significant monotonic trends through time. The 

leaf area density data was then normalized by temperature, carbon dioxide treatment, and 

canopy section for comparison using least squares linear regression tests to determine if 

there were trends between leaf area density and the plot temperature gradient.   
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We analyzed leaf inclination angle distributions in terms of their functional 

representation and dynamics with height, species, time, and category. Using kernel 

density functions, we found the frequency of mean leaf inclination angles. The frequency 

of the mean leaf angles was used to identify what leaf inclination distribution functions 

the trees represented. We again applied Mann Kendall tests to leaf inclination angles at 

each section of the canopy, for each species, grouped by carbon dioxide treatment to 

determine if there were monotonic trends through time. Additionally, we performed 

regressions with the same normalization technique as used for the leaf area density 

analysis to evaluate if there was a relationship between leaf angle and the temperature 

gradient across the SPRUCE plots.  

Results 

LAI Dynamics 

 We used a VCP model to evaluate LAI over time of peatland conifers 

cumulatively and at the species level under three treatment categories: elevated CO2 

increased temperature & blowers, ambient CO2 increased temperature & blowers, and 

control plots. We also analyzed LAI across the different plot temperature levels, +0°C, 

+2.25°C, +4.5°C, +6.75°C, and +9°C under ambient or elevated CO2. We found that the 

average LAI across SPRUCE plots over the past eight years was 1.9 and had a right 

skewed distribution (see Appendix B for LAI distribution figure). 

Based on a least squares regression analysis, we found that plots in elevated CO2 

and ambient CO2 with increased temperatures or with blowers had significantly 

increasing LAI values over time. Additionally, we found plots under control conditions 

exhibited a significant trend through time (Figure 3.6, Table 3.1). Time explained 41% 
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of the LAI trends in ambient CO2 plots while time explained less than 25% of the LAI 

trends in elevated CO2 and control plots. Ambient CO2 plots exhibited the greatest 

increase in LAI through time (Table 3.1). Plots under elevated CO2 and elevated 

temperature conditions had a mean LAI of 1.9 and a range of 0.9 to 3.9. Under ambient 

CO2 and elevated temperatures, the plots had a mean LAI of 1.7 and a range of 0.9 to 4.3. 

The mean plot LAI under control conditions was 1.9 and the range was 1.2 to 3.0 (see 

Appendix B for LAI distributions under different carbon dioxide treatments). 

 
Figure 3.6. LAI of all trees across SPRUCE plots under elevated CO2 and ambient 

CO2 conditions with elevated temperatures or with blowers both demonstrated 
increasing trends. LAI increased significantly under control conditions. Whisker 
lengths represent the minimum and maximum value that lies within 1.5 times the 

interquartile range. Diamonds represent outliers. Arrows in the legend indicate the 
direction of significant trends.  

Using regression analysis and the min-max normalization method, we analyzed 

plot LAIs and their relationship to temperature. The basis for the temperature regression 
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dependent variable was the mean air temperature at 2 m (Hanson et al., 2016) from May 

to September in each year (2016, 2017, 2018, 2019, 2020, 2021, and 2022) to reflect the 

temperatures encompassing the full growing season. As mean temperatures increased, 

under ambient CO2 conditions, LAI decreased. Plots under elevated CO2 conditions 

exhibited no significant trends with temperature (Table 3.1, Figure 3.7). We performed 

regression tests on LAI across temperature treatments and time. We found that the 

greatest increases in normalized LAI over time were occurring in the +9°C elevated CO2 

plots (Table 3.1, Figure 3.8) with a slope of 0.11. The lowest increases in LAI were 

occurring in the +6.75°C elevated CO2 plots with a slope of 0.02. Both trends were 

significant. Plots under elevated CO2 and +0°C did not demonstrate a significant trend 

through time (Table 3.1, Figure 3.9).  
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Figure 3.7. Normalized LAI in ambient CO2 plots exhibited a decreasing trend (R2 = 

0.19, m = -0.02, p < 0.001) with temperature. Elevated CO2 plot LAI presented no 
significant trend with temperature (p > 0.05). Shading indicates a 95% confidence 

interval and arrows in the legend indicate the direction of a significant trend.  
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Figure 3.8. The greatest increases in LAI among the ambient CO2 plots were in the 

+ 9°C plot (R2 = 0.70, p < 0.001, m = 0.10). The lowest increases were in the + 2.25°C 
plots (R2 = 0.36, p < 0.001, m = 0.05). All plots overall increased more significantly 

over time than in control plots. Significant trends (p < 0.001) and their direction are 
indicated by arrows in the legend. Shading indicates a 95% confidence interval. 

 
Figure 3.9. Plots under elevated CO2 and +9°C had the greatest increase in LAI over 

time (R2 = 0.88, p < 0.001, m = 0.11). The lowest increase in LAI was found in the 
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+6.75°C plot (R2 = 0.08, p < 0.05, m = 0.02). + 0°C plot did not exhibit a significant 
trend through time. Significant trends (p < 0.001) and their direction are indicated 
by arrows in the legend. Less significant trends (p < 0.05) and their direction are 
indicated by triangles in the legend. Shading indicates a 95% confidence interval.  

We performed an LAI analysis across plots with species separated, using 

CloudCompare to segment the species apart. We found that the mean spruce LAI was 1.5 

and the species’ range was 0.7 to 3.2. Larch LAI was lower, with an average of 0.5 and a 

range of 0.005 to 1.2. Distributions of spruce LAI followed similar patterns to the 

cumulative plot LAIs. Black spruce LAI demonstrated a right skewed distribution while 

the larch LAI had a bimodal distribution, with many trees having an LAI less than 1 (see 

Appendix B for LAI distributions for spruce and larch species).  

 We applied ordinary least squares regression tests to perform a species-

specific time series analysis on normalized groups. Similar trends resulted for the larch 

and spruce trees under both CO2 conditions through time. In ambient CO2 conditions, 

larch and spruce LAI followed statistically significant increasing trends. The larch LAI 

increased with a slope of 0.04 while the spruce had a slope of 0.02 (Table 3.2). Under 

elevated CO2 conditions, spruce LAI demonstrated increasing trends, slightly greater than 

in ambient CO2 conditions with a slope of 0.03. Larch LAI under elevated CO2 resulted 

in a less significant increasing trend (p < 0.05) with a slope of 0.01 (Table 3.2, Figure 

3.10). Between the two control plots, spruce LAI resulted in significant increases (m = 

0.07) in LAI over time and larch LAI increased with a slope of 0.03 (Table 3.2, Figure 

3.11).    
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Figure 3.10. In ambient CO2 conditions, larch and spruce LAI had statistically 

significant increasing trends. Under elevated CO2 conditions, spruce LAI increased 
significantly (p < 0.001) while the larch had a less significant increasing trend (p < 

0.05). Error bars represent a 95% confidence interval. Full arrows indicate 
significant trends (p < 0.001) under both CO2 conditions. One arrow and a triangle 

indicate most significant trends (p < 0.001) in ambient CO2 and less significant 
trends in elevated CO2 (p < 0.05).  
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Figure 3.11. Black spruce LAI between the unchambered control plots increased 

over time (p < 0.001, m = 0.42). Larch LAI also increased significantly over time in 
the control plots (p < 0.001, m = 0.08). Error bars indicate a 95% confidence 

interval. Arrows indicate the direction of significant trends.  

Leaf Area Density Trends 

 We evaluated the leaf area density trends through time and through the 

vertical canopy profile for the larch and spruce species. The average spruce leaf area 

density was 0.35 m2/m3 and the range was 0.03 m2/m3 to 1.5 m2/m3 with the lowest 

density of leaves being in the lower 0.5 m portion of the tree and the highest density 

being, on average, 1 m from the top of the canopy. Larch leaf area density averaged 0.21 

m2/m3 and ranged from 0.004 m2/m3 to 0.83 m2/m3. The maximum leaf area density was 

estimated to be 2 m from the top of the canopy (see Appendix B for leaf area density 

distributions for spruce and larch species). 

 From contact frequency estimates, we evaluated leaf area density over 

time for three portions of the spruce and larch canopies under different treatment 
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conditions. We performed Mann-Kendall tests to determine if the upper, middle, or lower 

plot canopy of either species was increasing or decreasing in leaf density over time.  

 Spruce leaf area densities exhibited no statistically significant trends 

through time under each treatment condition (p > 0.05). Larch leaf area density through 

time exhibited two statistically significant leaf area density trends while the rest were not 

significant. Upper larch leaf densities under ambient CO2 conditions resulted in 

increasing trends through time with a slope of 0.002 and middle larch canopies under 

control conditions increased with a slope of 0.001. Fluctuations in leaf area density over 

time were most notable in the upper canopies of trees (see Appendix B for leaf area 

density temporal trends by species figures and table). 

 Using least squares regression tests across temperature treatments we 

found normalized leaf area density was increasing in upper and middle canopies as 

temperatures got warmer in ambient CO2 plots and lower canopies did not have a 

significant trend. In elevated CO2 plots, upper and lower canopy leaf area density was 

significantly increasing across the experimental temperature gradient while middle 

canopies were decreasing across the temperature gradient (see Appendix B for leaf area 

density trends with temperature figures and table).  

Leaf Inclination Angle Trends  

 To analyze distributions and changes in leaf inclination angles of the 

spruce and larch trees we estimated the normal vectors of each 3.25 cm voxel and 

calculated the average inclination angle by estimating the angle between the normal 

vector and the instrument zenith angle (Equation 2.5). We analyzed the distribution of 

leaf angles across plots for each species (see Appendix B for leaf angle distributions for 
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the spruce and larch species). Additionally, we used Mann-Kendall tests to determine if 

leaf inclination angle was shifting through time in the upper, middle, and lower canopy 

profiles at the plot scale under different treatments for either species. 

 Spruce leaf angles had more vertical leaf angles in the lower canopy and 

more planar leaf angles in the upper canopy. On average, leaves were inclined at 59°, 

ranging from 41° to 68°. Larger angles represent more vertically angled leaves. Under 

eCO2 and elevated temperature conditions, spruce angles exhibited differing distributions 

through the vertical canopy. Upper leaf angles were more symmetrically distributed, 

having a mean angle of 58°, and the angle distribution ranged from 55° to 63°. The 

middle and lower canopies exhibited more vertical distributions of leaves where the mean 

angle was 60°. Leaf angles in the middle canopy ranged from 60° to 68° and in the lower 

canopy they ranged from 61° to 67°. Under ambient conditions, leaf angle distributions 

were consistently more symmetrical on average. Upper canopy spruce inclination angles 

under ambient conditions had a mean of 57° and a range of 46° to 62°. Middle and lower 

leaf angles were on average, 59° and 56° respectively. Their respective ranges were 45° 

to 66° in the middle canopy and 42° to 66° in the lower canopy. Under control 

conditions, spruce upper canopies had a mean inclination angle of 57° and a range of 45° 

to 65°, indicating a symmetrical upper portion on average. Similar to the plots under 

treatment conditions, on average, leaf inclination angles in control conditions in middle 

and lower canopies had more vertical leaf angles. Middle spruce canopies in the control 

plot exhibited mean angles of 59° with a range of 43° to 66° and lower spruce canopies 

had an average angle of 61° with a range of 42° to 66° (see Appendix B for leaf angle 

distributions by species). 
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We used Mann-Kendall tests to evaluate if spruce and larch leaf angle 

distributions were shifting through time in the different treatment plots. Only lower 

spruce canopies under warming and ambient CO2 had statistically significant decreases in 

leaf inclination angle, indicating that leaf angles were becoming more planar over time. 

We noted novel fluctuations toward more downward leaf angles for all canopy sections in 

2016 under eCO2. Additionally, we saw abnormal fluctuations downward in 2021 under 

aCO2 conditions and in 2020 and 2021 under control conditions. Needle inclination 

angles in elevated CO2 and control plots did not have any significant trends through time 

(see Appendix B for leaf angle temporal trends by species figures and table). 

 Larch leaf inclination angles were similar to spruce, showing spherical and 

vertical inclination angles on average. Cumulatively, larch trees across the site had an 

average leaf inclination angle of 58° and ranged from 45° to 71°. Under the elevated CO2 

and temperature conditions with blowers, larch tree upper canopies had average leaf 

inclination angles of 57° having a range of 54° to 63°. Middle and lower canopies under 

elevated CO2 and temperature had average inclination angles of 58°, with middle 

canopies ranging from 48° to 66° and lower canopies ranging from 52° to 71°. Under 

ambient CO2 larch canopies had spherically distributed leaf angles on average. Upper 

canopy leaf inclination angles were an average of 57° with a range of 50° to 65°. Middle 

larch (𝜇𝜇 = 58°) and lower larch (𝜇𝜇 = 59°) canopy leaf angles had the same range, 45° to 

65°, under the ambient CO2 conditions. Within control conditions, upper and middle 

canopy larch leaf angles had more spherical distributions, with averages of 56° and 58° 

and ranges of 51° to 59° and 50° to 62° respectively. Low canopy leaf distributions were 
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slightly more vertical on average, with a mean of 60° and a range of 51° to 63° (see 

Appendix B for distributions).  

Mann-Kendall test trend analyses revealed that larch leaf inclination angles were 

not shifting with statistical significance in any one direction. Similar to the spruce trees, 

we saw noticeable trends downward in leaf inclination angle in 2021 ambient CO2 plots 

and in 2020 and 2021 in the control plots (see Appendix B for figures). 

 We found that the normalized leaf inclination angles of the upper, middle, 

and lower canopies shifted significantly as plots got warmer. Only middle canopies under 

elevated CO2 did not show a significant trend across the temperature gradient. We found 

that leaf inclination angles decreased the most in middle canopies under ambient CO2 as 

plots got warmer with a slope of -0.04. Upper and lower canopies also had significant 

decreasing trends in average leaf inclination angle as the temperature of the plot 

increased (Figure 3.12, Table 3.3). As plots got warmer under elevated CO2 conditions, 

we found that upper canopy leaf inclination differed from the other canopy sections and 

treatment groups as its angles significantly increased, having a coefficient of 0.03. Lower 

canopy leaf inclination angles had decreasing trends with temperature (Figure 3.13, 

Table 3.3).  
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Figure 3.12. Normalized leaf inclination angles under ambient CO2 conditions 

exhibited significantly decreasing trends as temperatures increased in the upper 
canopy (R2 = 0.08, p < 0.001, m = -0.02), middle canopy (R2 = 0.21, p < 0.001, m = -

0.04), and the lower canopy (R2 = 0.18, p < 0.001, m = -0.03). Stars in the legend 
indicate significant trends.  
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Figure 3.13. Normalized leaf inclination angles under elevated CO2 conditions 

exhibited significantly increasing trends as temperatures increased in the upper 
canopy (R2 = 0.14, p < 0.001, m = 0.03. The middle canopy leaf inclination angles did 

not demonstrate any significant trends. Lower canopy leaf angles significantly 
decreased (R2 = 0.016, p < 0.05, m = -0.009). Stars in the legend indicate significant 

trends. 

Table 3.1. Ordinary least squares regression analysis LAI results for all species and 
treatments.  

Species Treatment Independent 
Metric 

Dependent 
Metric 

p R2 coefficient 95% CI 

All Ambient 
CO2 & 
warming 

Time LAI < 0.001 0.41 0.06 0.056 - 
0.068 

All Elevated 
CO2 & 
warming 

Time LAI < 0.001 0.21 0.05 0.039 - 
0.054 

All Control Time LAI < 0.001 0.14 0.04 0.02 - 
0.05 
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All Ambient 
CO2 

Temperature LAI < 0.001 0.19 -0.02 -0.026 -      
-0.019 

All Elevated 
CO2 

Temperature LAI 0.06 0.005 -0.004 -0.008       
- 0.000 

All 0°C & 
aCO2 

Time LAI < 0.001 0. 63 0.07 0.059 - 
0.084 

All 2.25°C & 
aCO2 

Time LAI < 0.001 0.36 0.05 0.032 - 
0.059 

All 4.5°C & 
aCO2 

Time LAI < 0.001 0.73 0.07 0.062 - 
0.081 

All 6.75°C & 
aCO2 

Time LAI < 0.001 0.65 0.08 0.063 - 
0.088 

All 9°C & 
aCO2 

Time LAI < 0.001 0.70 0.10 0.082 - 
0.111 

All 0°C & 
eCO2 

Time LAI 0.31 0.01 0.01 -0.011 - 
0.034 

All 2.25°C & 
eCO2 

Time LAI < 0.05 0.14 0.02 0.01 - 
0.04 

All 4.5°C & 
eCO2 

Time LAI < 0.001 0.66 0.08 0.071 - 
0.098 

All 6.75°C & 
eCO2 

Time LAI < 0.05 0.08 0.02 0.005 - 
0.039 

All 9°C & 
eCO2 

Time LAI < 0.001 0.88 0.11 0.098 - 
0.116 
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Table 3.2. Ordinary least squares regression analysis evaluating trends between LAI 
and time for the spruce and larch species. 

Species Treatment Independent 
Metric 

Dependent 
Metric 

p R2 coefficient 95% CI 

spruce Ambient 
CO2 

Time LAI < 0.001 0.06 0.02 0.014 – 
0.032 

larch Ambient 
CO2 

Time LAI < 0.001 0.19 0.04 0.036 – 
0.054 

spruce Elevated 
CO2 

Time LAI < 0.001 0.22 0.03 0.024 – 
0.035 

larch Elevated 
CO2 

Time LAI < 0.05 0.02 0.01 0.003 – 
0.026 

spruce Control Time LAI < 0.001 0.42 0.07 0.056 – 
0.082 

larch Control Time LAI < 0.001 0.08 0.03 0.016 – 
0.052 
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Table 3.3. Ordinary least squares regression analysis average leaf inclination angle 
results for all species across the temperature gradient. 

Species Tr
eatment 

Inde
pendent 
Metric 

Dep
endent 
Metric 

p 
2 

coe
fficient 

95
% CI 

All, 
Upper Canopy 

A
mbient 
CO2 

Tem
perature 

Lea
f Angle 

< 
0.001 .08 

-
0.02 

-
0.035 - -
0.012 

All, 
Middle 
Canopy 

A
mbient 
CO2 

Tem
perature 

Lea
f Angle 

< 
0.001 .21 

-
0.04 

-
0.043 - -
0.030 

All, 
Lower Canopy 

A
mbient 
CO2 

Tem
perature 

Lea
f Angle 

< 
0.001 .18 

-
0.03 

-
0.041 - - 
0.027 

All, 
Upper Canopy 

El
evated 
CO2 

Tem
perature 

Lea
f Angle 

< 
0.001 .14 

0.0
3 

0.
018 - 
0.040 

All, 
Middle 
Canopy 

El
evated 
CO2 

Tem
perature 

Lea
f Angle 

0
.68 .00 

0.0
0 

-
0.009 - 
0.006 

All, 
Low Canopy 

El
evated 
CO2 

Tem
perature 

Lea
f Angle 

< 
0.05 .02 

-
0.01 

-
0.015 - -
0.002 

 

Discussion  

 We used a voxel contact frequency-based model to answer the research 

question, to what degree are the spruce and larch tree canopy structures changing from 

2015 - 2022 across 12 SPRUCE plots. The VCP method enabled us to characterize LAI, 

leaf area density, and leaf inclination angles across horizontal and vertical spatial scales, 



72 

 

through time, and within different temperature and CO2 treatments. Within elevated CO2, 

we expected cumulative LAI to increase significantly, leaf area density to decrease 

significantly in the understory portion of canopies, and leaf inclination angles to become 

more vertical, on average, over time and temperature gradients. At the species level, we 

expected the spruce and larch trees to respond with opposing trends for each structural 

metric under the same treatment. 

Our data supported our hypothesis that under elevated temperature and CO2, 

cumulative LAI increased significantly over time. However, we also found that under 

ambient CO2 and warming cumulative LAI increased at a faster rate over time on 

average. Across the temperature gradient, we found that LAI increased the most 

significantly in the warmest plot under elevated CO2, supporting our hypothesis. 

Regarding leaf area density trends, our data did not support the hypothesis with statistical 

significance over time or across the temperature gradient. Leaf densities in the lower 

canopy under elevated CO2 and warming did not show any significant trends through 

time. Under elevated CO2 as temperatures increased, we found lower canopy leaf area 

density increased, but middle canopies decreased significantly. The data did not support 

our hypothesis that leaf inclination angles would become steeper with elevated CO2 

across time or with warming. Monotonic trend tests revealed that, in general, leaf angles 

did not change significantly in one direction over time. Across the temperature gradient 

we found that the upper canopy leaf angles under elevated CO2 increased with warming, 

supporting our hypothesis, but lower canopy needles had decreasing trends, negating the 

hypothesis. At the species level, our data negated the hypothesis that larch and spruce 

would have opposing trends when in any of the same treatments. Spruce and larch trees 
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both had increasing trends in LAI under ambient CO2 conditions, with the larch 

increasing at a greater rate. While in elevated CO2 and control conditions, spruce LAI 

increased at a greater rate than the larch. Leaf area density and leaf inclination angle 

species data through time did not reveal significant trends through time for the tree 

species to be compared.  

These data reveal that conifer canopy structure may not be comprehensively 

represented by two-dimensional LAI values and there are complex processes changing 

the vertical profile of tree canopies across temperature gradients. We noted anomalous 

fluctuations in the time series data. This enhances previous study findings that the impact 

of elevated CO2 and temperature varies across plant stages (Sabagh et al., 2020).  

LAI Across CO2 Treatment, Time, Species, and Temperature Treatments 

 Our time series analyses of LAI at the SPRUCE site across elevated 

temperatures under ambient and elevated CO2 conditions support current findings that 

elevated CO2 causes significant increases in LAI over time (Dermody et al., 2006). We 

additionally bolster this finding with evidence that LAI in SPRUCE control plots is, 

cumulatively, not increasing at as great of a rate over time. Previous studies have found 

that elevated CO2 enables plants to maximize photosynthesis with better water use 

efficiency (Sperry et al., 2019), leading to increased LAI.  

Our species-based LAI data adds to the currently documented measurements of 

black spruce and eastern larch currently available. The LAI ranges in this study 

corroborate with previous studies of black spruce studies reporting a range of 0.178 - 

8.97. Our plot-based black spruce LAI data ranges were 0.7 - 3.2. We reported values 

currently inside the recorded eastern larch range. The current recorded range is 0.68 - 
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2.29 and we reported 0.005 – 1.2. We found larch LAI tended to only increase over time 

at a greater rate than spruce trees under the ambient CO2 conditions, while the spruce 

outperformed the larch over time in the other two conditions. This may point to the larch 

being shaded out due to increased rates of spruce growth like in previous studies (Evans 

et al., 2016).  

Recently, LAI time series analysis experiments have shown that under warmer 

temperatures LAI has increased or is projected to increase (Chen et al., 2019; Ramezani 

et al., 2020). Initial declines in LAI seen across some plots in 2016 were likely an artifact 

of trees being at stages where they are more susceptible to stress and plot temperature 

treatments beginning. Other studies have found that, in earlier stages, plants under 

elevated CO2 and temperature have decreased leaf area initially, but subsequently 

developed greater water use efficiency and nutrient use efficiency with time (Kadam et 

al., 2014). We identified temperature thresholds where CO2 may have been modulating 

conifer heat tolerance. At mean air temperatures greater than 18°C, conifer LAI under 

warming conditions and ambient CO2 significantly decreased as temperatures increased, 

but under elevated CO2 LAI remained constant. These temperature results add new 

insights about potential temperature thresholds where conifer LAI is liable to be most 

impacted by warming, and how elevated CO2 could potentially improve heat tolerance in 

plants. Previous studies of corn and wheat LAI have found that elevated temperatures (+ 

1.8 to 2.9°C) with no elevated CO2 caused decreasing LAI trends (Chakrabarti et al., 

2013). Pan et al. (2018) found that tomato plants under heat stress resulted in decreased 

photosynthetic rates, but elevated CO2 combined with heat stress led to more efficient 

carboxylation rates, photochemical efficiency rates, and less oxidative stress. Our plot 
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temperature time-series data support these findings as we saw that plots under ambient 

CO2 decreased in LAI as temperatures increased, and under elevated CO2 LAI remained 

constant.  

Leaf Area Density Across CO2 Treatment, Species, Temperature Treatments, and Time 

 Current leaf area density trends in the literature indicate that leaf area 

density is, in general, increasing with higher CO2 levels (Lalic & Mihailovic, 2004). We 

attempted to refine this finding by describing leaf area density changes in the upper, 

middle, and lower canopy in conifers under warming and elevated or ambient CO2 

conditions over time. However, we found little statistical evidence that leaf area density 

in the different canopy sections were changing through time. Only upper larch canopies 

in ambient CO2 and warming and middle canopy larch tree densities in the control 

conditions demonstrated increased leaf area density over time. Importantly though, this 

significant leaf area density increase in the larch middle canopy under control conditions 

supplements the finding that the larch LAI was not changing through time in control 

conditions. This data supports previous studies showing that LAI alone does not always 

provide comprehensive canopy structural data (Sterba et al., 2019).  

Our leaf area density analysis across temperature treatments adds new insight 

about changes in leaves under different levels of warming. Current data reveals that leaf 

tissue density and stomatal density typically increase with warming (Zhu et al., 2020). 

We extend this data by providing insight about where in the canopy leaf area density may 

accumulate at warmer temperature levels. As plot temperatures increased in ambient CO2 

conditions, upper and middle leaf area density increased significantly. In the elevated 

CO2 conditions only upper and lower leaf area densities increased while middle canopy 
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leaf densities decreased with warming. The middle canopy leaf density decrease may 

help explain why LAI tended to decrease in certain levels of warming in the elevated CO2 

plots. Upper canopy leaf area density increases may be shading out middle canopy 

leaves, and the middle canopy’s leaf area density decrease subsequently led to the lower 

canopy increase across temperature gradients. This finding provides evidence that three-

dimensional vertical canopy profile data can help more comprehensively explain changes 

in two-dimensional data.       

Leaf Inclination Angles Across CO2 Treatment, Species, Temperature Treatments, and 

Time 

Leaf inclination angle studies currently show that species tend to shift their leaf 

angles toward a more vertical distribution under elevated carbon dioxide levels of +700 

ppm (Jayawardena et al., 2019) and leaf angle response to disturbance or stress varies by 

species (Ginebra-Solanellas et al., 2020; Holder et al., 2020; Reza Kasury et al., 2020). 

Our data contradicts these findings as we rarely saw trends showing significant change in 

leaf inclination angle over time. Only the lower spruce canopies under ambient CO2 and 

warming conditions showed a trend toward flatter leaf angles over time. We did note 

anomalous trends in leaf angle inclination in 2016 and 2020 - 2021, but these were 

similar across species and treatments, suggesting that they were artifacts of treatments 

beginning in 2016 and a drought year in 2020 and 2021. Other studies have also found 

that leaves adjust their angles frequently in response to sunlight, drought, and 

precipitation adhesion (Kattenborn et al., 2022). Our findings of needles trending toward 

more spherical or less vertical distributions can be explained by previous studies finding 

that leaves become more equally distributed over time, leading to spherical angles (J. Wu 
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et al., 2022). Additionally, our study applies +500 ppm of CO2, and in Jayawardena et al. 

(2019)’s study, they did not see any significant changes in leaf angles at +400 ppm, 

suggesting +500 ppm may not be a threshold for significant needle angle change through 

time. We found little evidence of significantly different distributions of average leaf 

inclination angles between the larch and the spruce trees at a cumulative level, but this is 

supported by recent studies finding boreal conifers having similar angles (Huemmrich, 

2013). These data will add to the current database of larch, spruce, and boreal conifer leaf 

angle measurements which currently range from planar to vertical distributions 

depending on the study.     

 Across the temperature treatments we found that leaf inclination angles 

tended to decrease except in upper canopy elevated CO2 treatments. The literature 

currently shows that as leaves undergo greater drought stress, they often become more 

vertical until they reach a wilting threshold. (Briglia et al., 2020) found that grapevine 

leaf angles increased by 30% under drought conditions as compared to well-watered 

conditions. In the ambient CO2 conditions, leaf inclination angles decreased on average 

as plots warmed. Additionally, lower canopy leaf angles across temperatures decreased in 

elevated CO2 plots, contradictory to the upper canopy inclination angles. Tendencies for 

leaf angles to become more planar with the most extreme levels of warming may indicate 

where leaves reach a wilting threshold (Kenchanmane Raju et al., 2020), with the lower 

and middle canopies reaching it first.       

Implications and Next Steps 

 Our main findings consist of significant increases in LAI over time under 

warming and that three-dimensional leaf area density provides data that helps 
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comprehensively explain LAI data. We found that leaf area density and leaf inclination 

angle trends over time were complex and often not statistically significant according to 

monotonic trend tests. However, we highlighted where the lower canopy leaf density 

increased while LAI did not, providing evidence that the vertical canopy profile is useful 

to have as an additional canopy change metric. Additionally, we provided further 

evidence that the leaf area density profile assists in explaining LAI trends by showing 

changes in elevated CO2 plots where upper and lower canopy leaf area density increased 

with temperature while the middle section did not. This helps to explain mechanistically 

why the two-dimensional LAI value may not be increasing as much under elevated CO2 

and warming as the ambient CO2 trees. Upper leaf area density may be causing decreases 

in middle section leaf resources. Our leaf inclination angle data provides possible 

evidence of trees reaching wilting thresholds in the warmest plots.    

 Our findings capture minute differences in vegetation metrics that add to 

the literature supporting the utility of TLS to comprehensively evaluate tree stands. We 

are unable to make conclusions about the relationship between the treatments and these 

structural measurements due to unresolved confounding factors, but we have 

comprehensively evaluated these trees across time and temperature gradients. With these 

evaluations, we have suggested possible processes at work causing the changes, but they 

cannot be considered conclusive. The application of mixed effects models with this data 

would assist in revealing more conclusive relationships between CO2, temperature, time, 

and species. However, our data supports the highly complex structural system that are 

treed peatland bogs and the necessity for detailed analyses to capture dynamics through 

time and space. Differing canopy section trends highlight the need to expand on canopy 



79 

 

structure beyond LAI alone as these impact photosynthesis, understory resources, and 

hydrologic inputs.  

Conclusion 

As the climate continues to warm and CO2 levels rise, it is important to monitor 

and quantify how tree canopies change through time. By quantifying black spruce and 

eastern larch LAI, leaf area density, and leaf inclination angle, this study established that 

LAI is significantly increasing in warmer conditions and increasing a slower rate in 

control conditions over time. Leaf area density trends revealed that upper, middle, and 

lower canopies did not always have the same trends, underscoring the need for vertical 

canopy profile analyses. There were many confounding factors in this study, making it 

difficult to associate any canopy structural changes to treatment conditions alone. It 

would be useful to incorporate a seasonality component by estimating canopy structural 

metrics in the winter to evaluate boreal forests’ leaf physiology sensitivity to seasonality. 

Additionally, normalizing the height of the plot-scale canopy would likely prevent 

disagreement between canopy section heights at the plot vs the individual tree scale, 

preventing possible outliers from skewing canopy section metrics. This data provides the 

opportunity to further constrain uncertainties in larger climate models, such as ELM-

SPRUCE and future mixed effects models. This study extends evidence that TLS is a 

useful tool for quantifying large amounts of canopy structural data to scales at a sub 

centimeter level.    
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CHAPTER 4: CONCLUSIONS  

 Canopy structure is complex, and its variation is capable of impacting 

peatland function (Strack et al., 2019). Monitoring how peatland canopy structure 

changes under different environmental conditions is necessary to better understand how 

terrestrial carbon budgets may change with rising temperatures and CO2 levels. 

Quantifying canopy structure accurately under different treatment conditions is 

challenging due to inconsistent structural-based validation metrics across treatment 

conditions. This underscores the need for models that can estimate canopy structure with 

parameters that maintain accuracy across inputs. Additionally, the complex changes that 

canopy structures can undergo under these differing environmental treatment conditions 

emphasizes the need for canopy structural estimations that quantify the entire vertical 

canopy profile. In this thesis, we used TLS data to build and validate a model to explore 

canopy structure accurately and comprehensively at the SPRUCE site.  

The first study of this thesis was a methods-based analysis where we used TLS 

point cloud data to develop a model to estimate LAI, leaf area density, and leaf 

inclination angle based on J. W. Wilson, (1960)’s contact frequency principle and 

workflows from Almeida et al. (2019); Hosoi & Omasa (2006); S. Li et al. (2017); Yan et 

al. (2021) to modify a voxel-based model (VCP). We validated the model against eight 

individual tree destructively harvested-based LAI estimates and two plot DHP-based LAI 

estimates. We found that incorporating correction workflows for wood component 

removal, clumping, leaf inclination angle, and projection coefficient calculation resulted 

in a model that maintained moderate accuracy across the voxel size input parameter, 

suggesting that the model would be effective at estimating canopy structure under 
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different conditions. Based on an error analysis, we also found that the leaf inclination 

angle corrected for the most error in LAI estimation and wood component removal 

corrected for the least amount of error.  

In the second study, we applied the modified and validated VCP model from the 

previous chapter to quantify the canopy structure across twelve plots at the SPRUCE site. 

We analyzed the structural data across the vertical and horizontal canopy profile, time, 

and temperature gradient. We found that the normalized LAI increased significantly and 

at a greater rate in plots under warming conditions over time as compared to plots under 

controlled conditions. Additionally, LAI increased the most significantly in the warmest 

plots under elevated and ambient CO2. Leaf area density trends did not indicate 

significant changes in the understory plot canopies, but they did offer insight about why 

plots under elevated CO2 occasionally had no significant trends in LAI under some 

temperature treatments. The data indicated that the leaf area density was decreasing in the 

middle canopy section across the temperature gradient, suggesting that while leaf area 

density builds in the upper canopy, middle canopies may be shaded out, better explaining 

LAI trends. Leaf inclination angle trends indicated that leaf angle tended to decrease 

across the temperature gradient except in the upper canopy. The spruce and larch species 

generally had similar canopy structural trends, which was not expected. However, in the 

control and elevated CO2 plots, larch LAI tended to have lower increases in LAI 

compared to spruce LAI over time. This suggests further data collection may resolve that 

these species respond differently under different CO2 conditions. From this study we 

extended previous canopy structural analyses and made predictions about what processes 

are affected and at work as the canopy changes.  
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There were various limitations, implications, and future proposals in each of these 

studies. The small validation sample size limited our ability to confirm the model’s 

accuracy using direct estimates of LAI in treatment plots. However, the current model 

was moderately accurate across parameter inputs. We recommend a future study that 

collects and destructively harvests at least 4 larch and 4 spruce trees to quantify how the 

model’s predictive accuracy may change over time and in the different treatment 

conditions. Additionally, future research should work to develop allometric relationships 

between LAI and structure of trees across different treatment conditions. In the second 

study we performed a comprehensive canopy structure analysis at the plot scale. We 

proposed what mechanisms may be at work or changing under the different treatment 

conditions to generate canopy changes. However, the confounding variables made it 

difficult to identify treatments as the main reason for these changes. The empirical data 

from this study can be used in the ELM-SPRUCE model or a mixed effects model to 

make firmer conclusions about the extent that the treatments are affecting canopy 

structure. The modified VCP workflow and TLS data comprehensively quantify canopy 

structure and provide metrics that help to better explain LAI trends across time and 

different environmental treatments. We recommend evaluating the model’s time series 

analysis capacity by standardizing vertical canopy height metrics using plot height 

distributions to adjust upper, middle, and lower canopy thresholds. This will make 

analyses less prone to possible outliers. The method should be modified, validated, and 

applied in this peatland ecosystem in the future and in other terrestrial ecosystems where 

traditional methods of canopy structure estimation may be limited due to spatial scales or 

time constraints. 
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Chapter 2 Supplementary Figures 

 
Figure A.1. The intensity-based random forest was more effective at separating leaf 

and wood components than the CANUPO and eigen feature-based algorithms.  
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Figure A.2. Individual tree TLS-based leaf area density vertical distribution for the 
largest spruce (8.93 m). Densities increased in the center and upper portions of the 

canopy. The average density (0.49 m2/m3) for the majority of the vertical tree 
canopy profile was found most often in the low to middle canopy. 
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Figure A.3. Individual tree TLS-based leaf area density vertical distribution for the 

largest larch tree (8.95 m). Densities increased in the center of the canopy. The 
average density (0.40 m2/m3) for the majority of the vertical tree canopy profile was 

found most often in the lower canopy. 
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Figure A.4. Leaf inclination angle estimations made through the vertical canopy for 
the largest spruce and larch trees. Higher regions of the canopy of both trees tended 
to have a more symmetrical distribution of leaves and the lowest portion had a more 

vertical distribution of leaf angles.  
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Figure A.5. Leaf inclination angle estimations made for the individually 

destructively harvested and scanned spruce trees. The average leaf angle was 60.5° 
and the median was 59.6°, resulting in a tendency toward vertically distributed 

leaves at the individual scale.   
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Figure A.6. Leaf inclination angle estimations made for the individually 

destructively harvested and scanned larch trees. The average leaf angle was 59.06° 
and the median was 58.43°, resulting in a tendency toward spherically distributed 

leaves at the individual scale.   



111 

 

 
Figure A.7. Leaf density and leaf inclination angle relationship for spruce trees. On 

average, as leaf density decreases needles become more vertically distributed.  

 
Figure A.8. Leaf density and leaf inclination angle relationship for larch. On 
average, as leaf density decreases needles become more vertically distributed
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Chapter 3 Supplementary Figures 

 

Figure B.1. Histogram with the LAI distribution for 12 SPRUCE plots across the 
experimental site, including from August 2015 - August 2022. 𝝁𝝁 = 1.9.  
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Figure B.2. The mean plot LAI across elevated carbon dioxide and elevated 

temperature plots was 1.9. The mean plot LAI under ambient carbon dioxide and 
elevated temperature plots was 1.7. The mean plot LAI under control conditions 

was 1.9. 
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Figure B.3. Histogram with the LAI distribution for all black spruce trees across the 
experimental site. 𝑵𝑵 = 1,184, 𝝁𝝁 = 1.5. 
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Figure B.4. Histogram with the LAI distribution for all eastern larch trees across 
the experimental site. 𝑵𝑵 = 432, 𝝁𝝁 = 0.5. 

 
Figure B.5. Vertical distributions of leaf area density for the black spruce and the 

eastern larch across the SPRUCE site. 

Table B.1. Mann-Kendall tests evaluating trends between leaf area density and time 
for the spruce and larch species. 

Species Treatment Independent 
Metric 

Dependent 
Metric 

p coefficient 

upper spruce Elevated 
CO2 

Time Leaf Area 
Density 

0.29 0.00 

upper larch Elevated 
CO2 

Time Leaf Area 
Density 

0.47 0.00 

upper spruce Control Time Leaf Area 
Density 

0.06 0.00 
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upper larch Control Time Leaf Area 
Density 

0.10 0.00 

upper spruce Ambient 
CO2 

Time Leaf Area 
Density 

0.97 0.00 

upper larch Ambient 
CO2 

Time Leaf Area 
Density 

< 0.05 0.002 

middle spruce Elevated 
CO2 

Time Leaf Area 
Density 

0.09 0.00 

middle larch Elevated 
CO2 

Time Leaf Area 
Density 

0.88 0.00 

middle spruce Control Time Leaf Area 
Density 

0.40 0.00 

middle larch Control Time Leaf Area 
Density 

< 0.05 0.001 

middle spruce Ambient 
CO2 

Time Leaf Area 
Density 

0.79 0.00 

middle larch Ambient 
CO2 

Time Leaf Area 
Density 

0.54 0.00 

lower spruce Elevated 
CO2 

Time Leaf Area 
Density 

0.89 0.00 

lower larch Elevated 
CO2 

Time Leaf Area 
Density 

0.23 0.00 

lower spruce Control Time Leaf Area 
Density 

0.62 0.00 
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lower larch Control Time Leaf Area 
Density 

0.73 0.00 

lower spruce Ambient 
CO2 

Time Leaf Area 
Density 

0.38 0.00 

lower larch Ambient 
CO2 

Time Leaf Area 
Density 

0.92 0.00 

 

 
Figure B.6. Spruce leaf area density through time under elevated CO2 did not show 

significant trends.  
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Figure B.7. Spruce leaf area density through time under ambient CO2 did not show 

significant trends. 

 
Figure B.8. Spruce leaf area density through time under controlled conditions did 

not show significant trends.   
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Figure B.9. Larch leaf area density through time under elevated CO2 did not show 

significant trends 

 
Figure B.10. Across the ambient CO2 , elevated temperature plots, the upper larch 

canopy leaf density increased with a slope of 0.002 (p < 0.05). Stars indicate a 
significant trend.  
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Figure B.11. Middle larch canopy leaf densities had increasing trends with a slope of 

0.001 (p < 0.05). Stars indicate a significant trend.  

Table B.2. Ordinary least squares regression analysis results for leaf area density 
and temperature. 

Species Treatment Independent 
Metric 

Dependent 
Metric 

p R2 coefficient 95% CI 

All, Upper 
Canopy 

Ambient 
CO2 

Temperature Leaf Area 
Density 

< 0.001 0.17 0.04 0.028 - 
0.053 

All, Middle 
Canopy 

Ambient 
CO2 

Temperature Leaf Area 
Density 

< 0.01 0.02 0.01 0.004 - 
0.016 

All, Lower 
Canopy 

Ambient 
CO2 

Temperature Leaf Area 
Density 

0.098 0.01 -0.01 -0.016 - 
0.001 

All, Upper 
Canopy 

Elevated 
CO2 

Temperature Leaf Area 
Density 

< 0.05 0.02 0.01 0.001 - 
0.025 

All, Middle 
Canopy 

Elevated 
CO2 

Temperature Leaf Area 
Density 

< 0.05 0.02 -0.01 -0.020 - -
0.004 
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All, Lower 
Canopy 

Elevated 
CO2 

Temperature Leaf Area 
Density 

< 0.01 0.02 0.01 0.004 - 
0.024 

 

 
Figure B.12. Normalized leaf area density in ambient CO2 plots exhibited increasing 
leaf area densities in upper (R2 = 0.17, p < 0.001, m = 0.04) and middle canopies (R2 
= 0.02, p < 0.01, m = 0.009). Lower canopy leaf densities did not have a significant 

trend across temperatures. Stars indicate a significant trend.  
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Figure B.13. Normalized leaf area density in elevated CO2 plots exhibited increasing 
leaf area densities in upper (R2 = 0.022, p < 0.05, m = 0.01) and lower canopies (R2 = 

0.019, p < 0.01, m = 0.01). Middle canopy leaf area densities had a significant 
decreasing trend across the temperature gradient (R2 = 0.019, p < 0.05, m = -0.01). 

Stars indicate a significant trend.  
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Figure B.14. Histogram with the average leaf inclination angle distribution for all 

black spruce trees across the experimental site. 𝑵𝑵 = 1,184, 𝝁𝝁 = 59°, the range was 41° 
to 68°. Cumulatively, spruce trees tended to represent either spherical or vertical 

leaf angle distribution patterns.  

 
 

Figure B.15. Spruce upper canopy leaf angles (𝝁𝝁 = 58°, range = 55° to 63°) under 
elevated CO2 conditions were, on average, more symmetrically distributed than 
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middle and lower canopy leaves. Middle (𝝁𝝁 = 60°, range = 45° to 68°) and lower (𝝁𝝁 = 
60°, range = 45° to 67°) canopies had more vertical distributions on average.    

 
Figure B.16. Spruce upper canopy leaf angles (𝝁𝝁 = 57°, range = 46° to 62°), middle 
(𝝁𝝁 = 59°, range = 45° to 66° and lower canopies (𝝁𝝁 = 56°, range = 42° to 66°) under 
ambient CO2 conditions had, on average, symmetrically distributed leaf inclination 

angles.    

 
Figure B.17. Control plot spruce upper canopy leaf inclination angles demonstrated 
more symmetrical trends (𝝁𝝁 = 57°, range = 45° to 65°). Middle (𝝁𝝁 = 59°, range = 43° 

to 66°) and lower canopy (𝝁𝝁 = 61°, range = 42° to 66°) were more vertical on 
average.  
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Table B.3. Mann-Kendall tests evaluating trends between leaf inclination angle and 
time for the spruce and larch species. 

Species Treatment Independent 
Metric 

Dependent Metric p coefficient 

upper 
spruce 

Elevated CO2 Time Average Leaf 
Inclination Angle 

0.68 0.00 

upper larch Elevated CO2 Time Average Leaf 
Inclination Angle 

0.16 -0.04 

upper 
spruce 

Control Time Average Leaf 
Inclination Angle 

0.65 -0.10 

upper larch Control Time Average Leaf 
Inclination Angle 

0.44 -0.05 

upper 
spruce 

Ambient CO2 Time Average Leaf 
Inclination Angle 

0.24 -0.01 

upper larch Ambient CO2 Time Average Leaf 
Inclination Angle 

0.32 -0.02 

middle 
spruce 

Elevated CO2 Time Average Leaf 
Inclination Angle 

0.37 -0.01 

middle 
larch 

Elevated CO2 Time Average Leaf 
Inclination Angle 

0.22 -0.01 

middle 
spruce 

Control Time Average Leaf 
Inclination Angle 

0.06 -0.03 

middle 
larch 

Control Time Average Leaf 
Inclination Angle 

0.50 -0.02 
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middle 
spruce 

Ambient CO2 Time Average Leaf 
Inclination Angle 

0.22 -0.01 

middle 
larch 

Ambient CO2 Time Average Leaf 
Inclination Angle 

0.87 0.00 

lower 
spruce 

Elevated CO2 Time Average Leaf 
Inclination Angle 

0.08 -0.01 

lower larch Elevated CO2 Time Average Leaf 
Inclination Angle 

0.77 0.00 

lower 
spruce 

Control Time Average Leaf 
Inclination Angle 

0.50 0.00 

lower larch Control Time Average Leaf 
Inclination Angle 

0.50 0.00 

lower 
spruce 

Ambient CO2 Time Average Leaf 
Inclination Angle 

< 0.05 -0.01 

lower larch Ambient CO2 Time Average Leaf 
Inclination Angle 

0.19 0.00 
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Figure B.18. Spruce leaf inclination angles over time under elevated CO2 did not 

exhibit significant trends in any one direction.   

 

 

 

 
Figure B.19. Spruce leaf inclination angles in upper and middle canopies over time 
under ambient CO2 did not exhibit significant trends in any one direction. Spruce 
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lower leaf angles showed a statistically significant downward trend (p < 0.05, 𝒎𝒎 = -
0.01). Stars indicate significance. 

 
Figure B.20. Spruce leaf inclination angles over time under control conditions did 

not exhibit significant trends in any one direction.  
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Figure B.21. Histogram with the average leaf inclination angle distribution for all 

eastern larch trees across the experimental site. 𝑵𝑵 = 432, 𝝁𝝁 = 58°, the range was 45° 
to 71°. Cumulatively, spruce trees tended to represent either spherical or vertical 

leaf angle distribution patterns.  
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Figure B.22. Larch upper (𝝁𝝁 = 57°, range = 54° to 63°), middle (𝝁𝝁 = 58°, range = 48° 

to 66°), and lower (𝝁𝝁 = 58°, range = 52° to 71°) canopy leaf angles under elevated 
CO2 conditions were, on average, symmetrically distributed.  

 
Figure B.23. Larch upper (𝝁𝝁 = 57°, range = 50° to 65°), middle (𝝁𝝁 = 58°, range = 45° 

to 65°), and lower (𝝁𝝁 = 59°, range = 45° to 65°) canopy leaf angles under ambient 
CO2 conditions were, on average, symmetrically distributed.  
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Figure B.24. Larch upper canopy (𝝁𝝁 = 56°, range = 51° to 59°]) and middle canopy 

(𝝁𝝁 = 58°, range = 50° to 62°) average inclination angles had a more spherical 
distribution than lower canopy (𝝁𝝁 = 60°, range = 51° to 63°) larch inclination angles 

under control conditions. 

 
Figure B.25. Larch average leaf inclination angles under elevated CO2 and warming 

did not have significant trends in any one direction.  
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Figure B.26. Larch average leaf inclination angles under ambient CO2 and warming 

did not have significant trends in any one direction. We saw an anomalous 
downward trend in leaf angles in 2021.   

 

 
Figure B.27. Larch average leaf inclination angles under control conditions did not 
have significant trends in one direction. We saw downward trends in leaf angles in 

2020 & 2021.   
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